Matlab/Octave toolbox for structurable and robust output-feedback LQR design

被引:11
作者
Ilka, Adrian [1 ]
机构
[1] Chalmers Univ Technol, Dept Elect Engn, Horsalsvagen 9-11, SE-41296 Gothenburg, Sweden
基金
欧盟地平线“2020”;
关键词
Linear quadratic regulator; Robust control; Output-feedback; Structured controller; SCHEDULED CONTROLLER-DESIGN; SYSTEMS;
D O I
10.1016/j.ifacol.2018.06.161
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a structurable robust output-feedback infinite horizon LQR design toolbox for Matlab and Octave is introduced. The aim of the presented toolbox is to fill the gap between available toolboxes for Matlab/Octave by extending the standard infinite horizon LQR design (from Matlab/Control System Toolbox, Octave/Control package) to robust and structurable output-feedback LQR design. The toolbox allows to design a robust infinite horizon output-feedback controller in forms like proportional (P), proportional-integral (PI), realizable proportional-integral-derivative (PID), realizable proportional-derivative (PD), realizable derivative (D), dynamic output-feedback (DOF), dynamic output-feedback with integral part (DOFI), dynamic output-feedback with integral and realizable derivative part (DOFID), and dynamic output-feedback with realizable derivative part (DOFD). In addition, the controller structure for all supported controller types is fully structurable. The toolbox relies on Yalmip (A Matlab/Octave Toolbox for Modeling and Optimization) and on linear matrix inequality solvers like SeDuMi, SDPT3, etc. Notions like "simple", "highly customizable", and "user-friendly" have been used and considered as main terms during the development process. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:598 / 603
页数:6
相关论文
共 33 条
[11]   GAIN-SCHEDULED CONTROLLER DESIGN: VARIABLE WEIGHTING APPROACH [J].
Ilka, Adrian ;
Vesely, Vojtech .
JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2014, 65 (02) :116-120
[12]  
Kwakernaak H., 1972, Linear Optimal Control Systems
[13]  
Messner B., 2017, TECHNICAL REPORT
[14]   TIME-INVARIANT LINEAR-QUADRATIC OPTIMAL-CONTROL PROBLEM [J].
MOLINARI, BP .
AUTOMATICA, 1977, 13 (04) :347-357
[15]   PID EQUIVALENT OF OPTIMAL REGULATOR [J].
MUKHOPADHYAY, S .
ELECTRONICS LETTERS, 1978, 14 (25) :821-822
[16]  
Rosenbrock H.H., 1970, STATE SPACE MULTIVAR
[17]  
Rosinova D., 2004, Periodica Polytechnica Electrical Engineering, V48, P151
[18]  
Rosinová D, 2003, KYBERNETIKA, V39, P447
[19]   Robust PID decentralized controller design using LMI [J].
Rosinova, Danica ;
Vesely, Vojtech .
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2007, 2 (02) :195-204
[20]  
Shamma JS, 2012, CONTROL OF LINEAR PARAMETER VARYING SYSTEMS WITH APPLICATIONS, P3, DOI 10.1007/978-1-4614-1833-7_1