PENALTY METHOD WITH CROUZEIX-RAVIART APPROXIMATION FOR THE STOKES EQUATIONS UNDER SLIP BOUNDARY CONDITION

被引:7
|
作者
Kashiwabara, Takahito [1 ]
Oikawa, Issei [2 ]
Zhou, Guanyu [3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
[3] Tokyo Univ Sci, Dept Appl Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
关键词
Nonconforming FEM; Stokes equations; slip boundary condition; domain perturbation; discrete H-1/2-norm; FINITE-ELEMENT APPROXIMATION; POROUS-MEDIA; DARCY;
D O I
10.1051/m2an/2019008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Omega subset of R-N (N = 2, 3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix-Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u . n(partial derivative Omega) = g on partial derivative Omega. Because the original domain Omega must be approximated by a polygonal (or polyhedral) domain Omega(h) before applying the finite element method, we need to take into account the errors owing to the discrepancy Omega not equal Omega(h), that is, the issues of domain perturbation. In particular, the approximation of n(partial derivative Omega) by n(partial derivative Omega h), makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H-1(Omega)(N) -> H-1/(2) (partial derivative Omega); u bar right arrow u . n(partial derivative Omega). In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O(h(alpha) + epsilon) and O(h(2 alpha) + epsilon) for the velocity in the H-1 - and L-2-norms respectively, where alpha = 1 if N = 2 and alpha = 1/2 if N = 3. This improves the previous result [T. Kashiwabara et al., Numer. Math. 134 (2016) 705-740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter epsilon in the estimates.
引用
收藏
页码:869 / 891
页数:23
相关论文
共 50 条
  • [1] The Crouzeix-Raviart element for the Stokes equations with the slip boundary condition on a curved boundary
    Zhou, Guanyu
    Oikawa, Issei
    Kashiwabara, Takahito
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
  • [2] ADAPTIVE CROUZEIX-RAVIART BOUNDARY ELEMENT METHOD
    Heuer, Norbert
    Karkulik, Michael
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 1193 - 1217
  • [3] Crouzeix-Raviart boundary elements
    Heuer, Norbert
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2009, 112 (03) : 381 - 401
  • [4] A QUASI-OPTIMAL CROUZEIX-RAVIART DISCRETIZATION OF THE STOKES EQUATIONS
    Verfuerth, Ruediger
    Zanotti, Pietro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1082 - 1099
  • [5] AN IMMERSED CROUZEIX-RAVIART FINITE ELEMENT METHOD FOR NAVIER-STOKES EQUATIONS WITH MOVING INTERFACES
    Wang, Jin
    Zhang, Xu
    Zhuang, Qiao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) : 563 - 586
  • [7] Finite volume method based on the Crouzeix-Raviart element for the Stokes equation
    Li Da-ming
    Journal of Zhejiang University-SCIENCE A, 2001, 2 (2): : 165 - 169
  • [8] A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
    Na An
    Xijun Yu
    Huanzhen Chen
    Chaobao Huang
    Zhongyan Liu
    Journal of Inequalities and Applications, 2017
  • [9] A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
    An, Na
    Yu, Xijun
    Chen, Huanzhen
    Huang, Chaobao
    Liu, Zhongyan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [10] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    Feng, Min-fu
    Qi, Rui-sheng
    Zhu, Rui
    Ju, Bing-tao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (03) : 393 - 404