Deep Continuous Fusion for Multi-sensor 3D Object Detection

被引:593
|
作者
Liang, Ming [1 ]
Yang, Bin [1 ,2 ]
Wang, Shenlong [1 ,2 ]
Urtasun, Raquel [1 ,2 ]
机构
[1] Uber Adv Technol Grp, Pittsburgh, PA 15201 USA
[2] Univ Toronto, Toronto, ON, Canada
来源
关键词
3D object detection; Multi-sensor fusion; Autonomous driving;
D O I
10.1007/978-3-030-01270-0_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization. Towards this goal, we design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution. Our proposed continuous fusion layer encode both discrete-state image features as well as continuous geometric information. This enables us to design a novel, reliable and efficient end-to-end learnable 3D object detector based on multiple sensors. Our experimental evaluation on both KITTI as well as a large scale 3D object detection benchmark shows significant improvements over the state of the art.
引用
收藏
页码:663 / 678
页数:16
相关论文
共 50 条
  • [41] A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR
    Xu, Xiaobin
    Zhang, Lei
    Yang, Jian
    Cao, Chenfei
    Wang, Wen
    Ran, Yingying
    Tan, Zhiying
    Luo, Minzhou
    REMOTE SENSING, 2022, 14 (12)
  • [42] Multi-sensor detection and fusion technique
    Bhargave, Ashish
    Arnbrose, Barry
    Lin, Freddie
    Kazantzidis, Manthos
    MULTISENSOR, MULTISOURCE INFORMATION FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2007, 2007, 6571
  • [43] Indoor Multi-Floor 3D Target Tracking Based on the Multi-Sensor Fusion
    Luo, Juan
    Zhang, Cuijun
    Wang, Chun
    IEEE ACCESS, 2020, 8 : 36836 - 36846
  • [44] Multi-feature Fusion VoteNet for 3D Object Detection
    Wang, Zhoutao
    Xie, Qian
    Wei, Mingqiang
    Long, Kun
    Wang, Jun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (01)
  • [45] Multi-Sensor Multi-Floor 3D Localization With Robust Floor Detection
    Li, You
    Gao, Zhouzheng
    He, Zhe
    Zhang, Peng
    Chen, Ruizhi
    El-Sheimy, Naser
    IEEE ACCESS, 2018, 6 : 76689 - 76699
  • [46] DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection
    Li, Yingwei
    Yu, Adams Wei
    Meng, Tianjian
    Caine, Ben
    Ngiam, Jiquan
    Peng, Daiyi
    Shen, Junyang
    Lu, Yifeng
    Zhou, Denny
    Le, Quoc, V
    Yuille, Alan
    Tan, Mingxing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17161 - 17170
  • [47] 2D/3D Sensor Exploitation and Fusion for Enhanced Object Detection
    Xu, Jiejun
    Kim, Kyungnam
    Zhang, Zhiqi
    Chen, Hai-wen
    Owechko, Yuri
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 778 - 784
  • [48] EagerMOT: 3D Multi-Object Tracking via Sensor Fusion
    Kim, Aleksandr
    Osep, Aljosa
    Leal-Taixe, Laura
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11315 - 11321
  • [49] Deep Transform Learning for Multi-Sensor Fusion
    Sahu, Saurabh
    Kumar, Kriti
    Majumdar, Angshul
    Chandra, M. Girish
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1996 - 2000
  • [50] Multi-Sensor Depth Fusion Framework for Real-Time 3D Reconstruction
    Ali, Muhammad Kashif
    Raiput, Asif
    Shahzad, Muhammad
    Khan, Farhan
    Akhtar, Faheem
    Borner, Anko
    IEEE ACCESS, 2019, 7 : 136471 - 136480