Contact metric manifolds with large automorphism group and (κ, μ)-spaces

被引:1
作者
Lotta, Antonio [1 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via Orabona 4, I-70125 Bari, Italy
来源
COMPLEX MANIFOLDS | 2019年 / 6卷 / 01期
关键词
contact metric manifold; (kappa; mu)-space; CLASSIFICATION; (K;
D O I
10.1515/coma-2019-0015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the classification of simply connected, complete (kappa, mu)-spaces from the point of view of homogeneous spaces. In particular, we exhibit new models of (kappa, mu)-spaces having Boeckx invariant-1. Finally, we prove that the number (n+1)(n+2)/2 is the maximum dimension of the automorphism group of a contact metric manifold of dimension 2n + 1, n >= 2, whose symmetric operator h has rank at least 3 at some point; if this dimension is attained, and the dimension of the manifold is not 7, it must be a (kappa, mu)-space. The same conclusion holds also in dimension 7 provided the almost CR structure of the contact metric manifold under consideration is integrable.
引用
收藏
页码:294 / 302
页数:9
相关论文
共 50 条
  • [41] A Study on Contact Metric Manifolds Admitting a Type of Solitons
    Mandal, Tarak
    De, Uday Chand
    Khan, Meraj Ali
    Khan, Mohammad Nazrul Islam
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [42] Yamabe solitons on 3-dimensional contact metric manifolds with Qφ = φQ
    Venkatesha, V.
    Naik, Devaraja Mallesha
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (03)
  • [43] *-Ricci tensor on (κ, μ)-contact manifolds
    Ma, Rongsheng
    Pei, Donghe
    AIMS MATHEMATICS, 2022, 7 (07): : 11519 - 11528
  • [44] A note on quasi-Yamabe solitons on contact metric manifolds
    Dey, Chiranjib
    De, Uday Chand
    JOURNAL OF GEOMETRY, 2020, 111 (01)
  • [45] η-Einstein contact metric manifolds with purely transversal Bach tensor
    Ghosh, Amalendu
    ANNALES POLONICI MATHEMATICI, 2021, 126 (03) : 241 - 250
  • [46] THE k-ALMOST YAMABE SOLITONS AND CONTACT METRIC MANIFOLDS
    Cui, Xuehui
    Chen, Xiaomin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 125 - 137
  • [47] NON EXISTENCE OF HOMOGENEOUS CONTACT METRIC MANIFOLDS OF NONPOSITIVE CURVATURE
    Lotta, Antonio
    TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (04) : 575 - 578
  • [48] Certain results on the conharmonic curvature tensor of (κ, μ)-contact metric manifolds
    Divyashree, G.
    Venkatesha
    CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (01): : 71 - 84
  • [49] Holomorphically planar conformal vector fields on contact metric manifolds
    Ghosh, A.
    ACTA MATHEMATICA HUNGARICA, 2010, 129 (04) : 357 - 367
  • [50] SECOND ORDER PARALLEL TENSORS ON (k, μ)-CONTACT METRIC MANIFOLDS
    Mondal, A. K.
    De, U. C.
    Ozgur, C.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (01): : 229 - 238