Contact metric manifolds with large automorphism group and (κ, μ)-spaces

被引:1
|
作者
Lotta, Antonio [1 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via Orabona 4, I-70125 Bari, Italy
来源
COMPLEX MANIFOLDS | 2019年 / 6卷 / 01期
关键词
contact metric manifold; (kappa; mu)-space; CLASSIFICATION; (K;
D O I
10.1515/coma-2019-0015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the classification of simply connected, complete (kappa, mu)-spaces from the point of view of homogeneous spaces. In particular, we exhibit new models of (kappa, mu)-spaces having Boeckx invariant-1. Finally, we prove that the number (n+1)(n+2)/2 is the maximum dimension of the automorphism group of a contact metric manifold of dimension 2n + 1, n >= 2, whose symmetric operator h has rank at least 3 at some point; if this dimension is attained, and the dimension of the manifold is not 7, it must be a (kappa, mu)-space. The same conclusion holds also in dimension 7 provided the almost CR structure of the contact metric manifold under consideration is integrable.
引用
收藏
页码:294 / 302
页数:9
相关论文
共 50 条
  • [1] Finiteness properties of automorphism spaces of manifolds with finite fundamental group
    Bustamante, Mauricio
    Krannich, Manuel
    Kupers, Alexander
    MATHEMATISCHE ANNALEN, 2024, 388 (04) : 3321 - 3371
  • [2] CONTACT METRIC (κ, μ)-SPACES AS BI-LEGENDRIAN MANIFOLDS
    Cappelletti Montano, Beniamino
    Di Terlizzi, Luigia
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (03) : 373 - 386
  • [3] The curvature tensor of -contact metric manifolds
    Arslan, Kadri
    Carriazo, Alfonso
    Martin-Molina, Veronica
    Murathan, Cengizhan
    MONATSHEFTE FUR MATHEMATIK, 2015, 177 (03): : 331 - 344
  • [4] A generalization of contact metric manifolds
    Kim, J. H.
    Park, J. H.
    Sekigawa, K.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (02): : 94 - 105
  • [5] CERTAIN SEMISYMMETRY PROPERTIES OF(κ, μ)-CONTACT METRIC MANIFOLDS
    De, Uday Chand
    Jun, Jae-Bok
    Samui, Srimayee
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) : 1237 - 1247
  • [6] CANONICAL FIBRATIONS OF CONTACT METRIC (κ, μ)-SPACES
    Loiudice, Eugenia
    Lotta, Antonio
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 300 (01) : 39 - 63
  • [7] Doubly warped product submanifolds of (κ, μ)-contact metric manifolds
    Sular, Sibel
    Ozgur, Cihan
    ANNALES POLONICI MATHEMATICI, 2011, 100 (03) : 223 - 236
  • [8] A Class of 3-dimensional Contact Metric Manifolds
    Erken, Irem Kupeli
    Murathan, Cengizhan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) : 1979 - 1994
  • [9] QUASI CONTACT METRIC MANIFOLDS SATISFYING A NULLITY CONDITION
    Malek, Fereshteh
    Hojati, Rezvan
    TOHOKU MATHEMATICAL JOURNAL, 2024, 76 (03) : 411 - 421
  • [10] GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS
    Kumara, Huchchappa Aruna
    Venkatesha, Venkatesha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 639 - 651