The Bohr operator on analytic functions and sections

被引:8
|
作者
Abu-Muhanna, Yusuf [1 ]
Ali, Rosihan M. [2 ]
Lee, See Keong [2 ]
机构
[1] Amer Univ Sharjah, Dept Math, Sharjah 26666, U Arab Emirates
[2] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
关键词
Bohr radius; Rogosinski radius; Bohr operator; von Neumann inequality; Section of analytic functions; Subordination; SUBORDINATING FAMILIES; POWER-SERIES; RADIUS; THEOREM; INEQUALITY; CONJECTURE;
D O I
10.1016/j.jmaa.2020.124837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bohr operator M-r for a given analytic function f(z) = Sigma(infinity)(n=0) a(n)z(n) and a fixed zin the unit disk, vertical bar z vertical bar = r, is given by M-r (f) = Sigma(infinity)(n=0) vertical bar a(n)vertical bar vertical bar z(n)vertical bar = Sigma(infinity)(n=0) vertical bar a(n)vertical bar r(n). Applying earlier results of Bohr and Rogosinski, the Bohr operator is used to readily establish the following inequalities: if f(z) = Sigma(infinity)(n=0) a(n)z(n) is subordinate (or quasi-subordinate) to h(z) = Sigma(infinity)(n=0) b(n)z(n) in the unit disk, then M-r(f) <= M-r(h), 0 <= r <= 1/3. Further, each k-th section s(k)(f) = a(0) + a(1)z + ... + a(k)z(k) satisfies vertical bar s(k) (f)vertical bar <= M-r (s(k) (h)), 0 <= r <= 1/2, and M-r (s(k) (f)) <= M-r (s(k) (h)), 0 <= r <= 1/3. Both constants 1/2 and 1/3 cannot be improved. From these inequalities, a refinement of Bohr's theorem is obtained in the subdisk vertical bar z vertical bar <= 1/3. Also established are growth estimates in the subdisk of radius 1/2 for the k-th section s(k)(f) of analytic functions f subordinate to a concave wedge-mapping. A von Neumann-type inequality is established for the class consisting of Schwarz functions in the unit disk. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Bohr-type inequalities of analytic functions
    Ming-Sheng Liu
    Yin-Miao Shang
    Jun-Feng Xu
    Journal of Inequalities and Applications, 2018
  • [32] The Bohr radius and its modifications for linearly invariant families of analytic functions
    Ponnusamy, S.
    Shmidt, E. S.
    Starkov, V. V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 533 (01)
  • [33] Sharp Bohr Radius Constants for Certain Analytic Functions
    Swati Anand
    Naveen Kumar Jain
    Sushil Kumar
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 1771 - 1785
  • [34] Sharp Bohr Radius Constants for Certain Analytic Functions
    Anand, Swati
    Jain, Naveen Kumar
    Kumar, Sushil
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (03) : 1771 - 1785
  • [35] Bohr and Rogosinski inequalities for operator valued holomorphic functions
    Allu, Vasudevarao
    Halder, Himadri
    Pal, Subhadip
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [36] Operator Valued Bohr-Type Inequalities for Certain Integral Transforms
    Ahammed, Sabir
    Ahamed, Molla Basir
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (02)
  • [37] Some Bohr-type inequalities with one parameter for bounded analytic functions
    Wu, Le
    Wang, Qihan
    Long, Boyong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
  • [38] Bohr operator on operator-valued polyanalytic functions on simply connected domains
    Allu, Vasudevarao
    Halder, Himadri
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (04): : 1411 - 1422
  • [39] Bohr-Type Inequalities for Unimodular Bounded Analytic Functions
    Chen, Kaixin
    Liu, Ming-Sheng
    Ponnusamy, Saminathan
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [40] Bohr Phenomenon for Locally Univalent Functions and Logarithmic Power Series
    Bhowmik, Bappaditya
    Das, Nilanjan
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (04) : 729 - 745