The Bohr operator on analytic functions and sections

被引:8
|
作者
Abu-Muhanna, Yusuf [1 ]
Ali, Rosihan M. [2 ]
Lee, See Keong [2 ]
机构
[1] Amer Univ Sharjah, Dept Math, Sharjah 26666, U Arab Emirates
[2] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
关键词
Bohr radius; Rogosinski radius; Bohr operator; von Neumann inequality; Section of analytic functions; Subordination; SUBORDINATING FAMILIES; POWER-SERIES; RADIUS; THEOREM; INEQUALITY; CONJECTURE;
D O I
10.1016/j.jmaa.2020.124837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bohr operator M-r for a given analytic function f(z) = Sigma(infinity)(n=0) a(n)z(n) and a fixed zin the unit disk, vertical bar z vertical bar = r, is given by M-r (f) = Sigma(infinity)(n=0) vertical bar a(n)vertical bar vertical bar z(n)vertical bar = Sigma(infinity)(n=0) vertical bar a(n)vertical bar r(n). Applying earlier results of Bohr and Rogosinski, the Bohr operator is used to readily establish the following inequalities: if f(z) = Sigma(infinity)(n=0) a(n)z(n) is subordinate (or quasi-subordinate) to h(z) = Sigma(infinity)(n=0) b(n)z(n) in the unit disk, then M-r(f) <= M-r(h), 0 <= r <= 1/3. Further, each k-th section s(k)(f) = a(0) + a(1)z + ... + a(k)z(k) satisfies vertical bar s(k) (f)vertical bar <= M-r (s(k) (h)), 0 <= r <= 1/2, and M-r (s(k) (f)) <= M-r (s(k) (h)), 0 <= r <= 1/3. Both constants 1/2 and 1/3 cannot be improved. From these inequalities, a refinement of Bohr's theorem is obtained in the subdisk vertical bar z vertical bar <= 1/3. Also established are growth estimates in the subdisk of radius 1/2 for the k-th section s(k)(f) of analytic functions f subordinate to a concave wedge-mapping. A von Neumann-type inequality is established for the class consisting of Schwarz functions in the unit disk. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Bohr-type operator on analytic functions and sections
    Huang, Yong
    Liu, Ming-Sheng
    Ponnusamy, Saminathan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) : 317 - 332
  • [2] Bohr-Rogosinski Inequalities for Bounded Analytic Functions
    Alkhaleefah, Seraj A.
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (11) : 2110 - 2119
  • [3] Bohr's phenomenon for analytic functions and the hyperbolic metric
    Abu Muhanna, Yusuf
    Ali, Rosihan M.
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) : 1059 - 1065
  • [4] Bohr-type inequalities for bounded analytic functions of Schwarz functions
    Hu, Xiaojun
    Wang, Qihan
    Long, Boyong
    AIMS MATHEMATICS, 2021, 6 (12): : 13608 - 13621
  • [5] Bohr Phenomenon for Certain Close-to-Convex Analytic Functions
    Allu, Vasudevarao
    Halder, Himadri
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (03) : 491 - 517
  • [6] Bohr's phenomenon for certain classes of analytic functions
    Arora, Vibhuti
    Vinayak, M.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025,
  • [7] Bohr Radius for Certain Analytic Functions
    Jain, Naveen Kumar
    Yadav, Shalu
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 211 - 221
  • [8] Bohr-Rogosinski phenomenon for analytic functions and Cesaro operators
    Kayumov, Ilgiz R.
    Khammatova, Diana M.
    Ponnusamy, Saminathan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (02)
  • [9] Bohr-type inequalities of analytic functions
    Liu, Ming-Sheng
    Shang, Yin-Miao
    Xu, Jun-Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [10] The Bohr phenomenon for analytic functions on shifted disks
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 103 - 120