Plastic collapse analysis of cracked structures using extended isogeometric elements and second-order cone programming

被引:24
|
作者
Nguyen-Xuan, H. [1 ]
Tran, Loc V. [2 ]
Thai, Chien H. [3 ]
Le, Canh V. [4 ]
机构
[1] Univ Sci, VNU HCMC, Fac Math & Comp Sci, Dept Mech, Ho Chi Minh City, Vietnam
[2] Sejong Univ, Dept Architectural Engn, Seoul 143747, South Korea
[3] Ton Duc Thang Univ, Div Computat Mech, Hanoi, Vietnam
[4] Int Univ, VNU HCMC, Dept Civil Engn, Ho Chi Minh City, Vietnam
基金
新加坡国家研究基金会;
关键词
Rigid-perfect plasticity; Cracked structure; Limit analysis; Isogeometric analysis; Second-order cone programming; PHANTOM-NODE METHOD; LAMINATED COMPOSITE; LIMIT ANALYSIS; SHAKEDOWN ANALYSIS; BUCKLING ANALYSIS; MESHFREE METHOD; LOWER BOUNDS; FORMULATION; LOADS; NURBS;
D O I
10.1016/j.tafmec.2014.07.008
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We investigate a numerical procedure based on extended isogeometric elements in combination with second-order cone programming (SOCP) for assessing collapse limit loads of cracked structures. We exploit alternative basis functions, namely B-splines or non-uniform rational B-splines (NURBS) in the context of limit analysis. The optimization formulation of limit analysis is rewritten in the form of second-order cone programming (SOCP) such that interior-point solvers can be exploited efficiently. Numerical examples are given to demonstrate reliability and effectiveness of the present method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 50 条
  • [1] Second-order variational analysis in second-order cone programming
    Hang, Nguyen T. V.
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 75 - 116
  • [2] Second-order variational analysis in second-order cone programming
    Nguyen T. V. Hang
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    Mathematical Programming, 2020, 180 : 75 - 116
  • [3] Upper bound limit analysis using simplex strain elements and second-order cone programming
    Makrodimopoulos, A.
    Martin, C. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2007, 31 (06) : 835 - 865
  • [4] Second-order cone programming
    F. Alizadeh
    D. Goldfarb
    Mathematical Programming, 2003, 95 : 3 - 51
  • [5] Second-order cone programming
    Alizadeh, F
    Goldfarb, D
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 3 - 51
  • [6] Rigid plastic model of incremental sheet deformation using second-order cone programming
    Raithatha, A.
    Duncan, S. R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (08) : 955 - 979
  • [7] Contact analysis of cable networks by using second-order cone programming
    Kanno, Y
    Ohsaki, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (06): : 2032 - 2052
  • [8] Axisymmetric Lower-Bound Limit Analysis Using Finite Elements and Second-Order Cone Programming
    Tang, Chong
    Toh, Kim-Chuan
    Phoon, Kok-Kwang
    JOURNAL OF ENGINEERING MECHANICS, 2014, 140 (02) : 268 - 278
  • [9] Perturbation analysis of second-order cone programming problems
    Bonnans, JF
    Ramírez, CH
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 205 - 227
  • [10] Perturbation analysis of second-order cone programming problems
    J. Frédéric Bonnans
    Héctor Ramírez C.
    Mathematical Programming, 2005, 104 : 205 - 227