Plastic collapse analysis of cracked structures using extended isogeometric elements and second-order cone programming

被引:24
作者
Nguyen-Xuan, H. [1 ]
Tran, Loc V. [2 ]
Thai, Chien H. [3 ]
Le, Canh V. [4 ]
机构
[1] Univ Sci, VNU HCMC, Fac Math & Comp Sci, Dept Mech, Ho Chi Minh City, Vietnam
[2] Sejong Univ, Dept Architectural Engn, Seoul 143747, South Korea
[3] Ton Duc Thang Univ, Div Computat Mech, Hanoi, Vietnam
[4] Int Univ, VNU HCMC, Dept Civil Engn, Ho Chi Minh City, Vietnam
基金
新加坡国家研究基金会;
关键词
Rigid-perfect plasticity; Cracked structure; Limit analysis; Isogeometric analysis; Second-order cone programming; PHANTOM-NODE METHOD; LAMINATED COMPOSITE; LIMIT ANALYSIS; SHAKEDOWN ANALYSIS; BUCKLING ANALYSIS; MESHFREE METHOD; LOWER BOUNDS; FORMULATION; LOADS; NURBS;
D O I
10.1016/j.tafmec.2014.07.008
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We investigate a numerical procedure based on extended isogeometric elements in combination with second-order cone programming (SOCP) for assessing collapse limit loads of cracked structures. We exploit alternative basis functions, namely B-splines or non-uniform rational B-splines (NURBS) in the context of limit analysis. The optimization formulation of limit analysis is rewritten in the form of second-order cone programming (SOCP) such that interior-point solvers can be exploited efficiently. Numerical examples are given to demonstrate reliability and effectiveness of the present method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 71 条
[1]   On implementing a primal-dual interior-point method for conic quadratic optimization [J].
Andersen, ED ;
Roos, C ;
Terlaky, T .
MATHEMATICAL PROGRAMMING, 2003, 95 (02) :249-277
[2]   An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms [J].
Andersen, KD ;
Christiansen, E ;
Conn, AR ;
Overton, ML .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01) :243-262
[3]   Computing limit loads by minimizing a sum of norms [J].
Andersen, KD ;
Christiansen, E ;
Overton, ML .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :1046-1062
[4]  
[Anonymous], 2009, MOSEK OPT TOOLB MATL
[5]  
[Anonymous], 2001, DUAL LIMIT SHAKEDOWN
[6]   A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis [J].
Auricchio, F. ;
Calabro, F. ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 :15-27
[7]   TRIANGULAR QUARTER-POINT ELEMENTS AS ELASTIC AND PERFECTLY-PLASTIC CRACK TIP ELEMENTS [J].
BARSOUM, RS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (01) :85-98
[8]   PLANE STRESS SHAKEDOWN ANALYSIS BY FINITE ELEMENTS [J].
BELYTSCHKO, T .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1972, 14 (09) :619-+
[9]   A large deformation, rotation-free, isogeometric shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M-C ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (13-16) :1367-1378
[10]   A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM [J].
Benson, D. J. ;
Bazilevs, Y. ;
De Luycker, E. ;
Hsu, M. -C. ;
Scott, M. ;
Hughes, T. J. R. ;
Belytschko, T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (06) :765-785