Stability Analysis and Optimal Control Strategies of an Echinococcosis Transmission Model

被引:0
|
作者
Yang, Run [1 ]
Zhao, Jianglin [1 ]
Yan, Yong [1 ]
机构
[1] Sichuan Minzu Coll, Fac Sci & Technol, Kangding, Peoples R China
基金
中国国家自然科学基金;
关键词
POPULATION-DYNAMICS; MATHEMATICAL-MODEL; ZIKA VIRUS; CYSTICERCOSIS; XINJIANG;
D O I
10.1155/2022/6154866
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a deterministic compartmental model for echinococcosis transmission dynamics. The basic reproduction number of the model determines the existence and stability of the disease-free and disease-endemic equilibrium points. We further formulate the optimal control problem and obtain the necessary conditions to minimize the number of infected individuals and the associated costs. Numerical simulations show that optimal control strategies can significantly reduce the number of infected individuals to lower levels. Environmental disinfection may be essential for the elimination of infections. The results of this study will be beneficial for the prevention and control of echinococcosis in the Ganzi Tibetan Autonomous Prefecture and other areas of China.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Mathematical model of transmission dynamics and optimal control strategies for 2009 A/H1N1 influenza in the Republic of Korea
    Kim, Soyoung
    Lee, Jonggul
    Jung, Eunok
    JOURNAL OF THEORETICAL BIOLOGY, 2017, 412 : 74 - 85
  • [42] Enhancing transmission control of the COVID-19 epidemic in India: optimal strategies and approaches
    Muthukumar, Sumathi
    Chinnadurai, Veeramani
    Balakumar, Abilasha
    OPSEARCH, 2024,
  • [43] Optimal control analysis of a mathematical model for unemployment
    Munoli, Surekha B.
    Gani, Shankrevva
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2016, 37 (04) : 798 - 806
  • [44] Transmission dynamics and optimal control of stage-structured HLB model
    Tu, Yunbo
    Gao, Shujing
    Liu, Yujiang
    Chen, Di
    Xu, Yan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (05) : 5180 - 5205
  • [45] Optimal control for an age-structured model for the transmission of hepatitis B
    Demasse, Ramses Djidjou
    Tewa, Jean-Jules
    Bowong, Samuel
    Emvudu, Yves
    JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 73 (02) : 305 - 333
  • [46] MODEL FOR TRANSMISSION AND OPTIMAL CONTROL OF ANTHRAX INVOLVING HUMAN AND ANIMAL POPULATION
    Zewdie, Assefa Denekew
    Gakkhar, Sunita
    Gupta, Shiv Kumar
    JOURNAL OF BIOLOGICAL SYSTEMS, 2022, 30 (03) : 605 - 630
  • [47] Stability analysis of fractional order model on corona transmission dynamics
    Hincal, Evren
    Alsaadi, Sultan Hamed
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [48] Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model
    Agusto, F. B.
    BIOSYSTEMS, 2013, 113 (03) : 155 - 164
  • [49] Modeling the Effects of Helminth Infection on the Transmission Dynamics of Mycobacterium tuberculosis under Optimal Control Strategies
    Lambura, Aristide G.
    Mwanga, Gasper G.
    Luboobi, Livingstone
    Kuznetsov, Dmitry
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020
  • [50] Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases
    Abboubakar, Hamadjam
    Kamgang, Jean Claude
    Nkamba, Leontine Nkague
    Tieudjo, Daniel
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (1-2) : 379 - 427