Carbon Coating and Zn2+ Doping of Magnetite Nanorods for Enhanced Electrochemical Energy Storage

被引:24
|
作者
Hu, Chenxi [1 ]
Guo, Shimei [1 ]
Lu, Guixia [1 ]
Fu, Ya [1 ]
Liu, Jiurong [1 ,1 ]
Wei, Huige [2 ]
Yan, Xingru [2 ]
Wang, Yiran [2 ]
Guo, Zhanhu [2 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Jinan 250061, Shandong, Peoples R China
[2] Lamar Univ, Dan F Smith Dept Chem Engn, Integrated Composites Lab, Beaumont, TX 77705 USA
基金
美国国家科学基金会;
关键词
magnetite nanorods; carbon coating; Zn2+-doping; cycling stability; rate capability; LITHIUM-ION BATTERIES; DOPED TIN OXIDES; ANODE MATERIAL; PERFORMANCE; FE3O4; ALPHA-FE2O3; STABILITY; COMPOSITE; NANOCOMPOSITES; NANOCRYSTALS;
D O I
10.1016/j.electacta.2014.10.014
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Zn2+-doped magnetite (Fe3O4) nanorods with carbon coating of controllable thickness (Zn-Fe3O4@C) were prepared from lab-made Zn2+-doped Fe2O3 nanorods which were simultaneously coated with and reduced by carbon during the carbonization process using pyrrole as the carbon precursor. The asprepared Zn-Fe3O4@ C nanocomposites were evaluated as anode materials for lithium-ion batteries (LIBs). The results show that the Zn-Fe3O4@C nanorods with 2.5 mol% Zn2+ doping demonstrated a reversible capacity of 949.1 mAh g (1), compared to only 315.4 and 235.5 mAh g (1) for Fe2O3 and Fe3O4@C nanorods, respectively, after 60 cycles at a current density of 100 mA g (1). The Zn-Fe3O4@C nanocomposite electrodes also exhibited better cycling and rate performances than the corresponding Fe2O3 and Fe3O4@C nanorods. The superior performances witnessed in Zn-Fe3O4@C are attributed to the Zn2+ doping and the carbon coating, which have efficiently enhanced the electrical conductivity and lithium ion diffusion. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:118 / 126
页数:9
相关论文
共 50 条
  • [41] Quicker and More Zn2+ Storage Predominantly from the Interface
    Dai, Yuhang
    Liao, Xiaobin
    Yu, Ruohan
    Li, Jinghao
    Li, Jiantao
    Tan, Shuangshuang
    He, Pan
    An, Qinyou
    Wei, Qiulong
    Chen, Lineng
    Hong, Xufeng
    Zhao, Kangning
    Ren, Yang
    Wu, Jinsong
    Zhao, Yan
    Mai, Liqiang
    ADVANCED MATERIALS, 2021, 33 (26)
  • [42] Engineering the crystal facets of α-MnO2 nanorods for electrochemical energy storage: experiments and theory
    Wang, Yifan
    Lu, Zhengwei
    Wen, Peipei
    Gong, Yinyan
    Li, Can
    Niu, Lengyuan
    Xu, Shiqing
    NANOSCALE, 2023, 15 (44) : 17850 - 17860
  • [43] Zn2+ responsive fluorescence enhancement for optical data storage
    Yuan, Xupeng
    Zhao, Miao
    Guo, Xinjun
    Li, Yao
    Gan, Zongsong
    Ruan, Hao
    APPLIED OPTICS, 2020, 59 (04) : 1249 - 1252
  • [44] TiO2 coated carbon nanotubes for electrochemical energy storage
    Hemalatha, K.
    Prakash, A. S.
    Guruprakash, K.
    Jayakumar, M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (06) : 1757 - 1766
  • [45] Hollow Carbon Nanospheres with Developed Porous Structure and Retained N Doping for Facilitated Electrochemical Energy Storage
    Xu, Fei
    Ding, Baichuan
    Qiu, Yuclian
    Wu, Jianping
    Cheng, Zeruizhi
    Jiang, Guangshen
    Li, Hejun
    Liu, Xingrui
    Wei, Bingqing
    Wang, Hongqiang
    LANGMUIR, 2019, 35 (40) : 12889 - 12897
  • [46] FeOOH electrodeposited on Ag decorated ZnO nanorods for electrochemical energy storage
    Yang, Sainan
    Li, Yiju
    Xu, Tengfei
    Li, Yuguang
    Fu, Huiqun
    Cheng, Kui
    Ye, Ke
    Yang, Long
    Cao, Dianxue
    Wang, Guiling
    RSC ADVANCES, 2016, 6 (45): : 39166 - 39171
  • [47] Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications
    Salunkhe, Rahul R.
    Jang, Kihun
    Lee, Sung-won
    Yu, Seongil
    Ahn, Heejoon
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (40) : 21630 - 21635
  • [48] New carbon for electrochemical energy storage and conversion
    Liang, Xinqi
    Chen, Minghua
    Pan, Guoxiang
    Wu, Jianbo
    Xia, Xinhui
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (04)
  • [49] Nanoporous carbon for electrochemical capacitive energy storage
    Shao, Hui
    Wu, Yih-Chyng
    Lin, Zifeng
    Taberna, Pierre-Louis
    Simon, Patrice
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (10) : 3005 - 3039
  • [50] Carbon Soot for Electrochemical Energy Storage Applications
    Potphode, Darshna D.
    Gangadharan, Ananya
    Sharma, Chandra S.
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2019, 85 (03): : 537 - 551