A Priori Error Estimates of Mixed Finite Element Methods for General Linear Hyperbolic Convex Optimal Control Problems

被引:2
作者
Lu, Zuliang [1 ,2 ]
Huang, Xiao [3 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[2] Beijing Computat Sci Res Ctr, Lab Appl Math, Beijing 100084, Peoples R China
[3] Chongqing Three Gorges Univ, Coll Elect & Informat Engn, Chongqing 404000, Peoples R China
基金
美国国家科学基金会;
关键词
APPROXIMATION; SUPERCONVERGENCE; CONVERGENCE;
D O I
10.1155/2014/547490
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to investigate the discretization of general linear hyperbolic convex optimal control problems by using the mixed finite element methods. The state and costate are approximated by the k order (k >= 0) Raviart-Thomas mixed finite elements and the control is approximated by piecewise polynomials of order k. By applying the elliptic projection operators and Gronwall's lemma, we derive a priori error estimates of optimal order for both the coupled state and the control approximation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] RECOVERY A POSTERIORI ERROR ESTIMATES FOR GENERAL CONVEX ELLIPTIC OPTIMAL CONTROL PROBLEMS SUBJECT TO POINTWISE CONTROL CONSTRAINTS
    Chen, Yanping
    Fu, Yao
    Liu, Huanwen
    Dai, Yongquan
    Wei, Huayi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (04) : 543 - 560
  • [42] New elliptic projections and a priori error estimates of H1-Galerkin mixed finite element methods for optimal control problems governed by parabolic integro-differential equations
    Hou, Tianliang
    Zhang, Jiaqi
    Li, Yanzhong
    Yang, Yueting
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 29 - 46
  • [43] A Priori Error Analysis of Mixed Virtual Element Methods for Optimal Control Problems Governed by Darcy Equation
    Wang, Xiuhe
    Wang, Qiming
    Zhou, Zhaojie
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (01) : 140 - 161
  • [44] A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems
    Chen, Yanping
    Lu, Zuliang
    Fu, Min
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (01) : 37 - 53
  • [45] A priori error analysis of stabilized mixed finite element method for reaction-diffusion optimal control problems
    Fu, Hongfei
    Guo, Hui
    Hou, Jian
    Zhao, Junlong
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 20
  • [46] A Priori Error Estimate of Splitting Positive Definite Mixed Finite Element Method for Parabolic Optimal Control Problems
    Fu, Hongfei
    Rui, Hongxing
    Zhang, Jiansong
    Guo, Hui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (02) : 215 - 238
  • [47] A Priori Error Estimates and Superconvergence of P02–P1 Mixed Finite Element Methods for Elliptic Boundary Control Problems
    Ch. Xu
    Numerical Analysis and Applications, 2021, 14 : 55 - 68
  • [48] A PRIORI ERROR ESTIMATES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC TIME-OPTIMAL CONTROL PROBLEMS
    Bonifacius, Lucas
    Pieper, Konstantin
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (01) : 129 - 162
  • [49] Higher Order Triangular Mixed Finite Element Methods for Semi linear Quadratic Optimal Control Problems
    Deng, Kang
    Chen, Yanping
    Lu, Zuliang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (02) : 180 - 196
  • [50] A PRIORI FINITE ELEMENT ERROR ANALYSIS FOR OPTIMAL CONTROL OF THE OBSTACLE PROBLEM
    Meyer, Christian
    Thoma, Oliver
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 605 - 628