A Priori Error Estimates of Mixed Finite Element Methods for General Linear Hyperbolic Convex Optimal Control Problems

被引:2
作者
Lu, Zuliang [1 ,2 ]
Huang, Xiao [3 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[2] Beijing Computat Sci Res Ctr, Lab Appl Math, Beijing 100084, Peoples R China
[3] Chongqing Three Gorges Univ, Coll Elect & Informat Engn, Chongqing 404000, Peoples R China
基金
美国国家科学基金会;
关键词
APPROXIMATION; SUPERCONVERGENCE; CONVERGENCE;
D O I
10.1155/2014/547490
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to investigate the discretization of general linear hyperbolic convex optimal control problems by using the mixed finite element methods. The state and costate are approximated by the k order (k >= 0) Raviart-Thomas mixed finite elements and the control is approximated by piecewise polynomials of order k. By applying the elliptic projection operators and Gronwall's lemma, we derive a priori error estimates of optimal order for both the coupled state and the control approximation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A priori and a posteriori error estimates of H1-Galerkin mixed finite element method for parabolic optimal control problems
    Shakya, Pratibha
    Sinha, Rajen Kumar
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (06) : 1056 - 1070
  • [32] A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator
    Frei, S.
    Rannacher, R.
    Wollner, W.
    CALCOLO, 2013, 50 (03) : 165 - 193
  • [33] Some error estimates of finite volume element method for parabolic optimal control problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    Hou, Tianliang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (02) : 145 - 165
  • [34] A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients
    Chen, Yanping
    Huang, Yunqing
    Liu, Wenbin
    Yan, Ningning
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 297 - 313
  • [35] Error Estimates and Superconvergence of Semidiscrete Mixed Methods for Optimal Control Problems Governed by Hyperbolic Equations
    Hou, T.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2012, 5 (04) : 348 - 362
  • [36] Error estimates of expanded mixed methods for optimal control problems governed by hyperbolic integro-differential equations
    Hou, Tianliang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1675 - 1693
  • [37] Error Estimates of Mixed Methods for Optimal Control Problems Governed by General Elliptic Equations
    Hou, Tianliang
    Li, Li
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (06) : 1050 - 1071
  • [38] A PRIORI AND POSTERIORI ERROR ESTIMATES OF LEGENDRE GALERKIN SPECTRAL METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Huang, Fei
    Lin, Li
    Cai, Fei
    Yang, Yin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 989 - 1006
  • [39] DISCONTINUOUS FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: ROBUST A PRIORI AND A POSTERIORI ERROR ESTIMATES
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 400 - 418
  • [40] A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (05) : 688 - 704