A Priori Error Estimates of Mixed Finite Element Methods for General Linear Hyperbolic Convex Optimal Control Problems

被引:2
作者
Lu, Zuliang [1 ,2 ]
Huang, Xiao [3 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[2] Beijing Computat Sci Res Ctr, Lab Appl Math, Beijing 100084, Peoples R China
[3] Chongqing Three Gorges Univ, Coll Elect & Informat Engn, Chongqing 404000, Peoples R China
基金
美国国家科学基金会;
关键词
APPROXIMATION; SUPERCONVERGENCE; CONVERGENCE;
D O I
10.1155/2014/547490
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to investigate the discretization of general linear hyperbolic convex optimal control problems by using the mixed finite element methods. The state and costate are approximated by the k order (k >= 0) Raviart-Thomas mixed finite elements and the control is approximated by piecewise polynomials of order k. By applying the elliptic projection operators and Gronwall's lemma, we derive a priori error estimates of optimal order for both the coupled state and the control approximation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    Luo XianBing
    Chen YanPing
    Huang YunQing
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 901 - 914
  • [2] Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems
    Chen, Yanping
    Huang, Yunqing
    Liu, Wenbin
    Yan, Ningning
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) : 382 - 403
  • [3] Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems
    Yanping Chen
    Yunqing Huang
    Wenbin Liu
    Ningning Yan
    Journal of Scientific Computing, 2010, 42 : 382 - 403
  • [4] A priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems
    Lu, Zuliang
    Chen, Yanping
    Huang, Yunqing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [5] Error estimates of mixed finite element methods for quadratic optimal control problems
    Xing, Xiaoqing
    Chen, Yanping
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1812 - 1820
  • [6] A Posteriori Error Estimates of Triangular Mixed Finite Element Methods for Semi linear Optimal Control Problems
    Lu, Zuliang
    Chen, Yanping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2009, 1 (02) : 242 - 256
  • [7] A PRIORI ERROR ESTIMATES OF FINITE VOLUME METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Feng, Yuming
    Lu, Zuliang
    Cao, Longzhou
    Li, Lin
    Zhang, Shuhua
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [8] A posteriori error estimates for fourth order hyperbolic control problems by mixed finite element methods
    Hou, Chunjuan
    Guo, Zhanwei
    Guo, Lianhong
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [9] Error estimates and superconvergence of mixed finite element methods for fourth order hyperbolic control problems
    Chen, Yanping
    Sun, Chunmei
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 642 - 653
  • [10] A priori and a posteriori error estimates of H1-Galerkin mixed finite element methods for elliptic optimal control problems
    Hou, Tianliang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (10) : 2542 - 2554