Solid-State Competitive Destabilization of Caffeine Malonic Acid Cocrystal: Mechanistic and Kinetic Investigations

被引:6
作者
Alsirawan, Mhd Bashir [3 ]
Lai, Xiaojun [1 ]
Prohens, Rafel [2 ]
Vangala, Venu R. [3 ]
Pagire, Sudhir K. [3 ]
Shelley, Petroc [4 ]
Bannan, Thomas J. [5 ]
Topping, David O. [4 ,5 ]
Paradkar, Anant [3 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Barcelona, Polymorphism & Calorimetry Unit, Barcelona 08028, Spain
[3] Univ Bradford, Ctr Pharmaceut Engn Sci, Bradford D7 1DP, W Yorkshire, England
[4] Univ Manchester, Sch Earth & Environm Sci, Manchester M13 9PL, Lancs, England
[5] Univ Manchester, Natl Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Oxalic acid;
D O I
10.1021/acs.cgd.0c01246
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The main objective of this research is to investigate both the mechanism and the kinetics of solvent-free destabilization of the model caffeine/malonic acid cocrystal (CA/MO 2:1) in the presence of oxalic acid (OX) as a structural competitor to malonic acid (MO). Competitive destabilization of CA/MO and subsequent formation of caffeine/oxalic acid (CA/OX) take place at temperatures significantly below their melting points. The destabilization mechanism was found to be mediated by sublimation of both CA/MO and OX. During CA/MO destabilization, free CA could not be detected, and direct transformation to the CA/OX cocrystal was observed. The destabilization kinetics follow Prout-Tompkins nucleation and the crystal growth model with an activation energy of 133.91 kJ/mol, and subsequent CA/OX growth kinetics follow Ginstling-Brounshtien and three-dimensional diffusion models with an activation energy range of 130.45-132.57 kJ/mol.
引用
收藏
页码:7598 / 7605
页数:8
相关论文
共 18 条
[1]   Mechanistic Understanding of Competitive Destabilization of Carbamazepine Cocrystals under Solvent Free Conditions [J].
Alsirawan, Mhd Bashir ;
Lai, Xiaojun ;
Prohens, Rafel ;
Vangala, Venu R. ;
Shelley, Petroc ;
Bannan, Thomas J. ;
Topping, David O. ;
Paradkar, Anant .
CRYSTAL GROWTH & DESIGN, 2020, 20 (09) :6024-6029
[2]   Coformer Replacement as an Indicator for Thermodynamic Instability of Cocrystals: Competitive Transformation of Caffeine:Dicarboxylic Acid [J].
Alsirawan, Mhd. Bashir ;
Vangala, Venu R. ;
Kendrick, John ;
Leusen, Frank J. J. ;
Paradkar, Anant .
CRYSTAL GROWTH & DESIGN, 2016, 16 (06) :3072-3075
[3]  
Arrhenius S., 1889, Z PHYS CHEM, V4, P96, DOI [DOI 10.1515/ZPCH-1889-0408, 10.1515/zpch-1889-0408]
[4]   Design and construction of a simple Knudsen Effusion Mass Spectrometer (KEMS) system for vapour pressure measurements of low volatility organics [J].
Booth, A. M. ;
Markus, T. ;
McFiggans, G. ;
Percival, C. J. ;
Mcgillen, M. R. ;
Topping, D. O. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2009, 2 (02) :355-361
[5]   Organic-inorganic ionic co-crystals: a new class of multipurpose compounds [J].
Braga, Dario ;
Grepioni, Fabrizia ;
Shemchuk, Oleksii .
CRYSTENGCOMM, 2018, 20 (16) :2212-2220
[6]   The Prout-Tompkins rate equation in solid-state kinetics [J].
Brown, ME .
THERMOCHIMICA ACTA, 1997, 300 (1-2) :93-106
[7]   THERMODYNAMIC PROPERTIES OF CAFFEINE CRYSTAL FORMS [J].
CESARO, A ;
STAREC, G .
JOURNAL OF PHYSICAL CHEMISTRY, 1980, 84 (11) :1345-1346
[8]   Supply and Demand in the Ball Mill: Competitive Cocrystal Reactions [J].
Fischer, Franziska ;
Lubjuhn, Dominik ;
Greiser, Sebastian ;
Rademann, Klaus ;
Emmerling, Franziska .
CRYSTAL GROWTH & DESIGN, 2016, 16 (10) :5843-5851
[9]   Dependence of cocrystal formation and thermodynamic stability on moisture sorption by amorphous polymer [J].
Good, David ;
Miranda, Crystal ;
Rodriguez-Hornedo, Nair .
CRYSTENGCOMM, 2011, 13 (04) :1181-1189
[10]   Solid-state kinetic models: Basics and mathematical fundamentals [J].
Khawam, Ammar ;
Flanagan, Douglas R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (35) :17315-17328