High-performance functional Renormalization Group calculations for interacting fermions

被引:54
作者
Lichtenstein, J. [1 ]
de la Pena, D. Sanchez [1 ]
Rohe, D. [2 ]
Di Napoli, E. [2 ,3 ,6 ]
Honerkamp, C. [1 ,4 ]
Maier, S. A. [1 ,5 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Solid State Phys, D-52074 Aachen, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, D-52056 Aachen, Germany
[4] Julich Aachen Res Alliance Fundamentals Future In, JARA FIT, Julich, Germany
[5] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[6] JARA HPC, D-52425 Julich, Germany
关键词
functional Renormalization Group; Interacting fermions; Hybrid parallelization; Hubbard model;
D O I
10.1016/j.cpc.2016.12.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the twofermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the t, t' Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 110
页数:11
相关论文
共 36 条
[1]   Odeint - Solving Ordinary Differential Equations in C plus [J].
Ahnert, Karsten ;
Mulansky, Mario .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
[2]   DCUHRE - AN ADAPTIVE MULTIDIMENSIONAL INTEGRATION ROUTINE FOR A VECTOR OF INTEGRALS [J].
BERNTSEN, J ;
ESPELID, TO ;
GENZ, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04) :452-456
[3]  
de la Pena D. Sanchez, 2016, ARXIV160601124
[4]   Electronic instabilities of the AA-honeycomb bilayer [J].
de la Pena, David Sanchez ;
Scherer, Michael M. ;
Honerkamp, Carsten .
ANNALEN DER PHYSIK, 2014, 526 (9-10) :366-371
[5]  
Eberlein A., 2014, ARXIV14077661
[6]   Self-energy effects in functional renormalization group flows of the two-dimensional t-t′ Hubbard model away from van Hove filling [J].
Eberlein, Andreas .
PHYSICAL REVIEW B, 2015, 92 (23)
[7]   Superconductivity in the two-dimensional t-t′-Hubbard model [J].
Eberlein, Andreas ;
Metzner, Walter .
PHYSICAL REVIEW B, 2014, 89 (03)
[8]   Effective interactions and fluctuation effects in spin-singlet superfluids [J].
Eberlein, Andreas ;
Metzner, Walter .
PHYSICAL REVIEW B, 2013, 87 (17)
[9]   Parametrization of Nambu Vertex in a Singlet Superconductor [J].
Eberlein, Andreas ;
Metzner, Walter .
PROGRESS OF THEORETICAL PHYSICS, 2010, 124 (03) :471-491
[10]   Self-energy flows in the two-dimensional repulsive Hubbard model [J].
Giering, Kay-Uwe ;
Salmhofer, Manfred .
PHYSICAL REVIEW B, 2012, 86 (24)