A note on the notion of geometric rough paths

被引:34
作者
Friz, Peter
Victoir, Nicolas
机构
[1] Univ Cambridge, Stat Lab, Cambridge CB3 0WB, England
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1007/s00440-005-0487-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use simple sub-Riemannian techniques to prove that every weak geometric p-rough path (a geometric p-rough path in the sense of [20]) is the limit in sup-norm of a sequence of canonically lifted smooth paths, uniformly bounded in p-variation, thus clarifying the two different definitions of a geometric p-rough path. Our proofs are sufficiently general to include the case of Holder- and modulus-type regularity. This allows us to extend a few classical results on Holder-spaces and p -variation spaces to the non-commutative setting necessary for the theory of rough paths. As an application, we give a precise description of the support of Enhanced Fractional Brownian Motion, and prove a conjecture by Ledoux et al.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 27 条
[1]  
[Anonymous], J MATH PHYS
[2]  
Ciesielski Z., 1960, Bulletin de l'Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques, V8, P217
[3]   Stochastic analysis, rough path analysis and fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) :108-140
[4]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214
[5]  
DELAPRADELLE A, CURVILINEAR INTEGRAL
[6]  
DUDLEY RM, LECT NOTES
[7]  
FOLLAND GB, 1982, MATH NOTES PRINCETON, V28
[8]   Approximations of the Brownian rough path with applications to stochastic analysis [J].
Friz, P ;
Victoir, N .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (04) :703-724
[9]  
FRIZ P, 2005, IN PRESS ANN I H P B
[10]  
FRIZ P, 2005, MODERN APPL MATH IMA, V140