New LMI conditions for delay-dependent asymptotic stability of delayed Hopfield neural networks

被引:50
作者
Lou, Xuyang [1 ]
Cui, Baotong [1 ]
机构
[1] So Yangtze Univ, Res Ctr Control Sci & Engn, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic stability; Hopfield neural networks; delay-dependent; Lyapunov functional; linear matrix inequality;
D O I
10.1016/j.neucom.2006.02.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, new delay-dependent asymptotic stability conditions for delayed Hopfield neural networks are given in terms of a linear matrix inequality, which are less conservative than existing ones in the literature. The conditions guarantee the existence of a unique equilibrium point and its global asymptotic stability of a given delayed Hopfield neural network. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2374 / 2378
页数:5
相关论文
共 50 条
[31]   Delay-dependent asymptotic stability of neural networks with time-varying delays [J].
Xu, Shengyuan ;
Lam, James ;
Ho, Daniel W. C. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (01) :245-250
[32]   Delay-dependent robust dissipativity conditions for delayed neural networks with random uncertainties [J].
Wang, Jing ;
Park, Ju H. ;
Shen, Hao ;
Wang, Jian .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 :710-719
[33]   Delay-dependent state estimation for delayed neural networks [J].
He, Yong ;
Wang, Qing-Guo ;
Wu, Min ;
Lin, Chong .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04) :1077-1081
[34]   Delay-dependent exponential stability analysis of fuzzy delayed Hopfield neural networks: a fuzzy Lyapunov-Krasovskii functional approach [J].
Sheng, Li ;
Yang, Huizhong .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :4296-4301
[35]   Delay-dependent robust stability for uncertain stochastic fuzzy Hopfield neural networks with time-varying delays [J].
Sheng, Li ;
Gao, Ming ;
Yang, Huizhong .
FUZZY SETS AND SYSTEMS, 2009, 160 (24) :3503-3517
[36]   Improved delay-dependent stability results of recurrent neural networks [J].
Li, Tao ;
Yao, Xiuming ;
Wu, Lingyao ;
Li, Jianqing .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) :9983-9991
[37]   Asymptotic stability and synchronization of fractional order Hopfield neural networks with unbounded delay [J].
He, Bin-bin ;
Zhou, Hua-Cheng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (03) :3157-3175
[38]   New delay-dependent stability criterion for stochastic recurrent neural networks [J].
Yang, Liyun ;
Ren, Mifeng ;
Hao, Dongbo ;
Yang, Liqin .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2010, 11 (3-4) :164-172
[39]   New delay-dependent stability criteria for switched Hopfield neural networks of neutral type with additive time-varying delay components [J].
Dharani, S. ;
Rakkiyappan, R. ;
Cao, Jinde .
NEUROCOMPUTING, 2015, 151 :827-834
[40]   Delay-Dependent Exponential Stability of Stochastic Delayed Recurrent Neural Networks with Markovian Switching [J].
刘海峰 ;
王春华 ;
魏国亮 .
Journal of Donghua University(English Edition), 2008, (02) :195-199