Studies of parenchymal texture added to mammographic breast density and risk of breast cancer: a systematic review of the methods used in the literature

被引:20
作者
Anandarajah, Akila [1 ]
Chen, Yongzhen [2 ]
Colditz, Graham A. [1 ]
Hardi, Angela [3 ]
Stoll, Carolyn [1 ]
Jiang, Shu [1 ]
机构
[1] Washington Univ, Dept Surg, Div Publ Hlth Sci, Sch Med, 660 S Euclid Ave MSC 8100-0094-2200, St Louis, MO 63110 USA
[2] St Louis Univ, Sch Med, St Louis, MO USA
[3] Washington Univ, Bernard Becker Med Lib, Sch Med, MSC 8132-12-01,660 S Euclid Ave, St Louis, MO 63110 USA
关键词
Breast density; Mammography; Parenchymal patterns; Risk prediction; Texture; AVERAGE RISK; WOMEN; PREDICTION; FEATURES;
D O I
10.1186/s13058-022-01600-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
This systematic review aimed to assess the methods used to classify mammographic breast parenchymal features in relation to the prediction of future breast cancer. The databases including Medline (Ovid) 1946-, Embase.com 1947-, CINAHL Plus 1937-, Scopus 1823-, Cochrane Library (including CENTRAL), and Clinicaltrials.gov were searched through October 2021 to extract published articles in English describing the relationship of parenchymal texture features with the risk of breast cancer. Twenty-eight articles published since 2016 were included in the final review. The identification of parenchymal texture features varied from using a predefined list to machine-driven identification. A reduction in the number of features chosen for subsequent analysis in relation to cancer incidence then varied across statistical approaches and machine learning methods. The variation in approach and number of features identified for inclusion in analysis precluded generating a quantitative summary or meta-analysis of the value of these features to improve predicting risk of future breast cancers. This updated overview of the state of the art revealed research gaps; based on these, we provide recommendations for future studies using parenchymal features for mammogram images to make use of accumulating image data, and external validation of prediction models that extend to 5 and 10 years to guide clinical risk management. Following these recommendations could enhance the applicability of models, helping improve risk classification and risk prediction for women to tailor screening and prevention strategies to the level of risk.
引用
收藏
页数:18
相关论文
共 63 条
[1]   Assessing breast cancer risk within the general screening population: developing a breast cancer risk model to identify higher risk women at mammographic screening [J].
Abdolell, Mohamed ;
Payne, Jennifer, I ;
Caines, Judy ;
Tsuruda, Kaitlyn ;
Barnes, Penny J. ;
Talbot, Pam J. ;
Tong, Olivia ;
Brown, Peter ;
Rivers-Bowerman, Michael ;
Iles, Sian .
EUROPEAN RADIOLOGY, 2020, 30 (10) :5417-5426
[2]   Breast Tissue Organisation and its Association with Breast Cancer Risk [J].
Ali, Maya Alsheh ;
Czene, Kamila ;
Eriksson, Louise ;
Hall, Per ;
Humphreys, Keith .
BREAST CANCER RESEARCH, 2017, 19
[3]   Mammographic microcalcifications and risk of breast cancer [J].
Azam, Shadi ;
Eriksson, Mikael ;
Sjolander, Arvid ;
Gabrielson, Marike ;
Hellgren, Roxanna ;
Czene, Kamila ;
Hall, Per .
BRITISH JOURNAL OF CANCER, 2021, 125 (05) :759-765
[4]  
Bae Jong-Myon, 2016, J Prev Med Public Health, V49, P367
[5]   Breast Cancer Risk Reduction, Version 2.2015 [J].
Bevers, Therese B. ;
Ward, John H. ;
Arun, Banu K. ;
Colditz, Graham A. ;
Cowan, Kenneth H. ;
Daly, Mary B. ;
Garber, Judy E. ;
Gemignani, Mary L. ;
Gradishar, William J. ;
Jordan, Judith A. ;
Korde, Larissa A. ;
Kounalakis, Nicole ;
Krontiras, Helen ;
Kumar, Shicha ;
Kurian, Allison ;
Laronga, Christine ;
Layman, Rachel M. ;
Loftus, Loretta S. ;
Mahoney, Martin C. ;
Merajver, Sofia D. ;
Meszoely, Ingrid M. ;
Mortimer, Joanne ;
Newman, Lisa ;
Pritchard, Elizabeth ;
Pruthi, Sandhya ;
Seewaldt, Victoria ;
Specht, Michelle C. ;
Visvanathan, Kale ;
Wallace, Anne ;
Bergman, Mary Ann ;
Kumar, Rashmi .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2015, 13 (07) :880-915
[6]   Mammographic breast density as an intermediate phenotype for breast cancer [J].
Boyd, NF ;
Rommens, JM ;
Vogt, K ;
Lee, V ;
Hopper, JL ;
Yaffe, MJ ;
Paterson, AD .
LANCET ONCOLOGY, 2005, 6 (10) :798-808
[7]   Mammographic density and the risk and detection of breast cancer [J].
Boyd, Norman F. ;
Guo, Helen ;
Martin, Lisa J. ;
Sun, Limei ;
Stone, Jennifer ;
Fishell, Eve ;
Jong, Roberta A. ;
Hislop, Greg ;
Chiarelli, Anna ;
Minkin, Salomon ;
Yaffe, Martin J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (03) :227-236
[8]   Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density [J].
Brentnall, Adam R. ;
Cuzick, Jack ;
Buist, Diana S. M. ;
Bowles, Erin J. Aiello .
JAMA ONCOLOGY, 2018, 4 (09)
[9]   Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort [J].
Brentnall, Adam R. ;
Harkness, Elaine F. ;
Astley, Susan M. ;
Donnelly, Louise S. ;
Stavrinos, Paula ;
Sampson, Sarah ;
Fox, Lynne ;
Sergeant, Jamie C. ;
Harvie, Michelle N. ;
Wilson, Mary ;
Beetles, Ursula ;
Gadde, Soujanya ;
Lim, Yit ;
Jain, Anil ;
Bundred, Sara ;
Barr, Nicola ;
Reece, Valerie ;
Howell, Anthony ;
Cuzick, Jack ;
Evans, D. Gareth R. .
BREAST CANCER RESEARCH, 2015, 17
[10]   Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation (PERSPECTIVE I&I) [J].
Brooks, Jennifer D. ;
Nabi, Hermann H. ;
Andrulis, Irene L. ;
Antoniou, Antonis C. ;
Chiquette, Jocelyne ;
Despres, Philippe ;
Devilee, Peter ;
Dorval, Michel ;
Droit, Arnaud ;
Easton, Douglas F. ;
Eisen, Andrea ;
Eloy, Laurence ;
Fienberg, Samantha ;
Goldgar, David ;
Hahnen, Eric ;
Joly, Yann ;
Knoppers, Bartha Maria ;
Lofters, Aisha ;
Masson, Jean-Yves ;
Mittmann, Nicole ;
Paquette, Jean-Sebastien ;
Pashayan, Nora ;
Schmutzler, Rita ;
Stockley, Tracy ;
Tavtigian, Sean, V ;
Walker, Meghan J. ;
Wolfson, Michael ;
Chiarelli, Anna Maria ;
Simard, Jacques .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (06)