A New Preconditioner for Toeplitz Matrices

被引:3
作者
Dominguez-Jimenez, Maria Elena [1 ]
Ferreira, Paulo J. S. G. [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada, ETSII, GI TACA, E-28006 Madrid, Spain
[2] Univ Aveiro, Signal Proc Lab, DETI IEETA, P-3810193 Aveiro, Portugal
关键词
PCG; preconditioners; Toeplitz matrices; CIRCULANT PRECONDITIONERS;
D O I
10.1109/LSP.2009.2024735
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we introduce and analyze a new preconditioner for Toeplitz matrices that exhibits excellent spectral properties: the eigenvalues of the preconditioned matrix are highly clustered around the unity. As a result, it yields very rapid convergence when used to solve Toeplitz equations via the preconditioned conjugate gradient method. The new preconditioner can be regarded as a refinement of preconditioners built by embedding the Toeplitz matrix in a positive definite circulant. Necessary and sufficient conditions that ensure that the positive definite embedding is possible are given.
引用
收藏
页码:758 / 761
页数:4
相关论文
共 50 条
[41]   Toeplitz-structured compressed sensing matrices [J].
Bajwa, Waheed U. ;
Haypt, Jarvis D. ;
Raz, Gil M. ;
Wright, Stephen J. ;
Nowak, Robert D. .
2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, :294-+
[42]   Some remarks on Toeplitz multipliers and Hankel matrices [J].
Pelczynski, Aleksander ;
Sukochev, Fyodor .
STUDIA MATHEMATICA, 2006, 175 (02) :175-204
[43]   Series and Toeplitz matrices (a global implicit approach) [J].
Vojtas, P .
TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 14, 1998: REAL FUNCTIONS, 1998, :269-281
[44]   Tensor properties of multilevel Toeplitz and related matrices [J].
Olshevsky, V ;
Oseledets, I ;
Tyrtyshnikov, E .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 412 (01) :1-21
[45]   Preconditioners for Ill-Conditioned Toeplitz Matrices [J].
Daniel Potts ;
Gabriele Steidl .
BIT Numerical Mathematics, 1999, 39 :513-533
[46]   Preconditioners for ill-conditioned Toeplitz matrices [J].
Potts, D ;
Steidl, G .
BIT, 1999, 39 (03) :513-533
[47]   Determinant for the cyclic heptadiagonal matrices with Toeplitz structure [J].
Solary, Maryam Shams ;
Sadeghy, Ensieh .
AFRIKA MATEMATIKA, 2020, 31 (3-4) :407-422
[48]   APPLICATION OF THE PARTITIONING METHOD TO SPECIFIC TOEPLITZ MATRICES [J].
Stanimirovic, Predrag ;
Miladinovic, Marko ;
Stojanovic, Igor ;
Miljkovic, Sladjana .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (04) :809-821
[49]   Eigenvalues of tridiagonal pseudo-Toeplitz matrices [J].
Kulkarni, D ;
Schmidt, D ;
Tsui, SK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 297 (1-3) :63-80
[50]   Eigenvalue Localization for Symmetric Positive Toeplitz Matrices [J].
Pena, Juan M. .
AXIOMS, 2025, 14 (04)