A New Preconditioner for Toeplitz Matrices

被引:3
作者
Dominguez-Jimenez, Maria Elena [1 ]
Ferreira, Paulo J. S. G. [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada, ETSII, GI TACA, E-28006 Madrid, Spain
[2] Univ Aveiro, Signal Proc Lab, DETI IEETA, P-3810193 Aveiro, Portugal
关键词
PCG; preconditioners; Toeplitz matrices; CIRCULANT PRECONDITIONERS;
D O I
10.1109/LSP.2009.2024735
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we introduce and analyze a new preconditioner for Toeplitz matrices that exhibits excellent spectral properties: the eigenvalues of the preconditioned matrix are highly clustered around the unity. As a result, it yields very rapid convergence when used to solve Toeplitz equations via the preconditioned conjugate gradient method. The new preconditioner can be regarded as a refinement of preconditioners built by embedding the Toeplitz matrix in a positive definite circulant. Necessary and sufficient conditions that ensure that the positive definite embedding is possible are given.
引用
收藏
页码:758 / 761
页数:4
相关论文
共 50 条
[31]   On certain decompositions of complex inverse Toeplitz matrices and related fast algorithms for solving linear systems with Toeplitz coefficient matrices [J].
Gel'fgat, V. I. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (08) :1057-1061
[32]   On certain decompositions of complex inverse Toeplitz matrices and related fast algorithms for solving linear systems with Toeplitz coefficient matrices [J].
V. I. Gel’fgat .
Computational Mathematics and Mathematical Physics, 2013, 53 :1057-1061
[33]   Distribution of Eigenvalues of Real Symmetric Palindromic Toeplitz Matrices and Circulant Matrices [J].
Adam Massey ;
Steven J. Miller ;
John Sinsheimer .
Journal of Theoretical Probability, 2007, 20 :637-662
[34]   Preconditioners for ill-posed Toeplitz matrices with differentiable generating functions [J].
Estatico, C. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (03) :237-257
[35]   Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices [J].
Massey, Adam ;
Miller, Steven J. ;
Sinsheimer, John .
JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (03) :637-662
[36]   The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices [J].
Diele, F ;
Lopez, L .
APPLIED MATHEMATICS LETTERS, 1998, 11 (03) :61-69
[37]   SIMPLE BOUNDS ON THE EXTREME EIGENVALUES OF TOEPLITZ MATRICES [J].
HERTZ, D .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (01) :175-176
[38]   INVERSE EIGENVALUE PROBLEMS FOR SYMMETRICAL TOEPLITZ MATRICES [J].
FRIEDLAND, S .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (04) :1142-1153
[39]   A PRECONDITIONED MINRES METHOD FOR NONSYMMETRIC TOEPLITZ MATRICES [J].
Pestana, J. ;
Wathen, A. J. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (01) :273-288
[40]   Circulant preconditioners for functions of Hermitian Toeplitz matrices [J].
Hon, Sean .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 :328-340