A New Preconditioner for Toeplitz Matrices

被引:3
作者
Dominguez-Jimenez, Maria Elena [1 ]
Ferreira, Paulo J. S. G. [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada, ETSII, GI TACA, E-28006 Madrid, Spain
[2] Univ Aveiro, Signal Proc Lab, DETI IEETA, P-3810193 Aveiro, Portugal
关键词
PCG; preconditioners; Toeplitz matrices; CIRCULANT PRECONDITIONERS;
D O I
10.1109/LSP.2009.2024735
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we introduce and analyze a new preconditioner for Toeplitz matrices that exhibits excellent spectral properties: the eigenvalues of the preconditioned matrix are highly clustered around the unity. As a result, it yields very rapid convergence when used to solve Toeplitz equations via the preconditioned conjugate gradient method. The new preconditioner can be regarded as a refinement of preconditioners built by embedding the Toeplitz matrix in a positive definite circulant. Necessary and sufficient conditions that ensure that the positive definite embedding is possible are given.
引用
收藏
页码:758 / 761
页数:4
相关论文
共 20 条
[1]  
[Anonymous], 1999, Fast Reliable Algorithms for Matrices with Structure
[2]  
[Anonymous], 2015, Linear and Nonlinear Programming
[3]  
Bini D., 1994, POLYNOMIAL MATRIX CO
[4]   Any circulant-like preconditioner for multilevel matrices is not superlinear [J].
Capizzano, SS ;
Tyrtyshnikov, E .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (02) :431-439
[5]   The best circulant preconditioners for Hermitian Toeplitz systems [J].
Chan, RH ;
Yip, AM ;
Ng, MK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) :876-896
[6]   Conjugate gradient methods for toeplitz systems [J].
Chan, RH ;
Ng, MK .
SIAM REVIEW, 1996, 38 (03) :427-482
[7]   The best circulant preconditioners for Hermitian Toeplitz systems II: The multiple-zero case [J].
Chan, RH ;
Ng, MK ;
Yip, AM .
NUMERISCHE MATHEMATIK, 2002, 92 (01) :17-40
[8]   TOEPLITZ PRECONDITIONERS FOR HERMITIAN TOEPLITZ-SYSTEMS [J].
CHAN, RH ;
NG, KP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 190 :181-208
[9]  
Chen K., 2005, Matrix preconditioning techniques and applications
[10]  
FERREIRA PJS, 1994, P SYSID 94 10 IFAC S, V3, P271