Laelaps: An Energy-Efficient Seizure Detection Algorithm from Long-term Human iEEG Recordings without False Alarms

被引:38
作者
Burrello, Alessio [1 ]
Cavigelli, Lukas [1 ]
Schindler, Kaspar [2 ]
Benini, Luca [1 ]
Rahimi, Abbas [1 ]
机构
[1] Swiss Fed Inst Technol, Integrated Syst Lab, Zurich, Switzerland
[2] Inselspital Bern, Sleep Wake Epilepsy Ctr, Bern, Switzerland
来源
2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE) | 2019年
关键词
Hyperdimensional computing; symbolic analysis;
D O I
10.23919/date.2019.8715186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose Laelaps, an energy-efficient and fast learning algorithm with no false alarms for epileptic seizure detection from long-term intracranial electroencephalography (iEEG) signals. Laelaps uses end-to-end binary operations by exploiting symbolic dynamics and brain-inspired hyperdimensional computing. Laelaps's results surpass those yielded by state-of-the-art (SoA) methods [1], [2], [3], including deep learning, on a new very large dataset containing 116 seizures of 18 drug-resistant epilepsy patients in 2656 hours of recordings each patient implanted with 24 to 128 iEEG electrodes. Laelaps trains 18 patient-specific models by using only 24 seizures: 12 models are trained with one seizure per patient, the others with two seizures. The trained models detect 79 out of 92 unseen seizures without any false alarms across all the patients as a big step forward in practical seizure detection. Importantly, a simple implementation of Laelaps on the Nvidia Tegra X2 embedded device achieves 1.7x 3.9 x faster execution and 1.4 x 2.9x lower energy consumption compared to the best result from the SoA methods. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch.
引用
收藏
页码:752 / 757
页数:6
相关论文
共 22 条
[1]  
Altaf M., 2016, IEEE T BIOMED CIRC S, V10, P49
[2]   Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings [J].
Baldassano, Steven N. ;
Brinkmann, Benjamin H. ;
Ung, Hoameng ;
Blevins, Tyler ;
Conrad, Erin C. ;
Leyde, Kent ;
Cook, Mark J. ;
Khambhati, Ankit N. ;
Wagenaar, Joost B. ;
Worrell, Gregory A. ;
Litt, Brian .
BRAIN, 2017, 140 :1680-1691
[3]   Crowdsourcing reproducible seizure forecasting in human and canine epilepsy [J].
Brinkmann, Benjamin H. ;
Wagenaar, Joost ;
Abbot, Drew ;
Adkins, Phillip ;
Bosshard, Simone C. ;
Chen, Min ;
Tieng, Quang M. ;
He, Jialune ;
Munoz-Almaraz, F. J. ;
Botella-Rocamora, Paloma ;
Pardo, Juan ;
Zamora-Martinez, Francisco ;
Hills, Michael ;
Wu, Wei ;
Korshunova, Iryna ;
Cukierski, Will ;
Vite, Charles ;
Patterson, Edward E. ;
Litt, Brian ;
Worrell, Gregory A. .
BRAIN, 2016, 139 :1713-1722
[4]  
Burrello A., 2018, IEEE BIOCAS
[5]   A review of symbolic analysis of experimental data [J].
Daw, CS ;
Finney, CEA ;
Tracy, ER .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (02) :915-930
[6]   Long-term monitoring of cardiorespiratory patterns in drug-resistant epilepsy [J].
Goldenholz, Daniel M. ;
Kuhn, Amanda ;
Austermuehle, Alison ;
Bachler, Martin ;
Mayer, Christopher ;
Wassertheurer, Siegfried ;
Inati, Sara K. ;
Theodore, William H. .
EPILEPSIA, 2017, 58 (01) :77-84
[7]   Latencies from intracranial seizure onset to ictal tachycardia: A comparison to surface EEG patterns and other clinical signs [J].
Hirsch, Martin ;
Altenmueller, Dirk-Matthias ;
Schulze-Bonhage, Andreas .
EPILEPSIA, 2015, 56 (10) :1639-1647
[8]  
Hussein R., 2018, P IEEE ICASSP
[9]   Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals [J].
Jaiswal, Abeg Kumar ;
Banka, Haider .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 34 :81-92
[10]   Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors [J].
Kanerva, Pentti .
COGNITIVE COMPUTATION, 2009, 1 (02) :139-159