Analytically Solvable Model of Spreading Dynamics with Non-Poissonian Processes

被引:87
作者
Jo, Hang-Hyun [1 ]
Perotti, Juan I. [1 ]
Kaski, Kimmo [1 ]
Kertesz, Janos [1 ,2 ]
机构
[1] Aalto Univ, Sch Sci, BECS, FI-00076 Espoo, Finland
[2] Cent European Univ, Ctr Network Sci, H-1051 Budapest, Hungary
基金
芬兰科学院;
关键词
Complex systems;
D O I
10.1103/PhysRevX.4.011041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Non-Poissonian bursty processes are ubiquitous in natural and social phenomena, yet little is known about their effects on the large-scale spreading dynamics. In order to characterize these effects, we devise an analytically solvable model of susceptible-infected spreading dynamics in infinite systems for arbitrary inter-event time distributions and for the whole time range. Our model is stationary from the beginning, and the role of the lower bound of inter-event times is explicitly considered. The exact solution shows that for early and intermediate times, the burstiness accelerates the spreading as compared to a Poisson-like process with the same mean and same lower bound of inter-event times. Such behavior is opposite for late-time dynamics in finite systems, where the power-law distribution of inter-event times results in a slower and algebraic convergence to a fully infected state in contrast to the exponential decay of the Poisson-like process. We also provide an intuitive argument for the exponent characterizing algebraic convergence.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   The origin of bursts and heavy tails in human dynamics [J].
Barabási, AL .
NATURE, 2005, 435 (7039) :207-211
[3]   Nature of the Epidemic Threshold for the Susceptible-Infected-Susceptible Dynamics in Networks [J].
Boguna, Marian ;
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW LETTERS, 2013, 111 (06)
[4]   Thresholds for Epidemic Spreading in Networks [J].
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[5]   Activity clocks: spreading dynamics on temporal networks of human contact [J].
Gauvin, Laetitia ;
Panisson, Andre ;
Cattuto, Ciro ;
Barrat, Alain .
SCIENTIFIC REPORTS, 2013, 3
[6]   Localization and Spreading of Diseases in Complex Networks [J].
Goltsev, A. V. ;
Dorogovtsev, S. N. ;
Oliveira, J. G. ;
Mendes, J. F. F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (12)
[7]  
Harris TE, 2002, THEORY BRANCHING PRO
[8]   Temporal networks [J].
Holme, Petter ;
Saramaki, Jari .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 519 (03) :97-125
[9]   Small but slow world: How network topology and burstiness slow down spreading [J].
Karsai, M. ;
Kivela, M. ;
Pan, R. K. ;
Kaski, K. ;
Kertesz, J. ;
Barabasi, A. -L. ;
Saramaki, J. .
PHYSICAL REVIEW E, 2011, 83 (02)
[10]   A power-law distribution of inter-spike intervals in renal sympathetic nerve activity in salt-sensitive hypertension-induced chronic heart failure [J].
Kemuriyama, Takehito ;
Ohta, Hiroyuki ;
Sato, Yoshiaki ;
Maruyama, Satoshi ;
Tandai-Hiruma, Megumi ;
Kato, Kazuo ;
Nishida, Yasuhiro .
BIOSYSTEMS, 2010, 101 (02) :144-147