Synthesis of Multifunctional Magnetic NanoFlakes for Magnetic Resonance Imaging, Hyperthermia, and Targeting

被引:47
作者
Cervadoro, Antonio [1 ,2 ]
Cho, Minjung [1 ]
Key, Jaehong [1 ]
Cooper, Christy [3 ]
Stigliano, Cinzia [1 ]
Aryal, Santosh [1 ]
Brazdeikis, Audrius [4 ,5 ]
Leary, James F. [3 ]
Decuzzi, Paolo [1 ]
机构
[1] Houston Methodist Res Inst, Houston, TX 77030 USA
[2] Politecn Torino, I-10129 Turin, Italy
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Univ Houston, Dept Phys, Houston, TX 77004 USA
[5] Univ Houston, Texas Ctr Superconduct, Houston, TX 77004 USA
基金
美国国家卫生研究院;
关键词
nanoparticles; theranostic; iron oxide nanocubes; relaxivity; specific absorption rate; IRON-OXIDE NANOPARTICLES; NANOCUBES; MRI; SIZE; BIODEGRADATION; ASSEMBLIES; RELAXIVITY; CLUSTERS; DELIVERY; CELLS;
D O I
10.1021/am504270c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Iron oxide nanoparticles (IOs) are intrinsically theranostic agents that could be used for magnetic resonance imaging (MRI) and local hyperthermia or tissue thermal ablation. Yet, effective hyperthermia and high MR contrast have not been demonstrated within the same nanoparticle configuration. Here, magnetic nanoconstructs are obtained by confining multiple, similar to 20 nm nanocubes (NCs) within a deoxychitosan core. The resulting nanoconstructs-magnetic nanoflakes (MNFs)-exhibit a hydrodynamic diameter of 156 +/- 3.6 nm, with a polydispersity index of similar to 0.2, and are stable in PBS up to 7 days. Upon exposure to an alternating magnetic field of 512 kHz and 10 kA m(-1), MNFs provide a specific absorption rate (SAR) of similar to 75 W g(Fe)(-1), which is 4-15 times larger than that measured for conventional IOs. Moreover, the same nanoconstructs provide a remarkably high transverse relaxivity of similar to 500 (mM s)(-1), at 1.41T. MNFs represent a first step toward the realization of nanoconstructs with superior relaxometric and ablation properties for more effective theranostics.
引用
收藏
页码:12939 / 12946
页数:8
相关论文
共 48 条
[1]   Chitosan Oligosaccharide-Stabilized Ferrimagnetic Iron Oxide Nanocubes for Magnetically Modulated Cancer Hyperthermia [J].
Bae, Ki Hyun ;
Park, Mihyun ;
Do, Min Jae ;
Lee, Nohyun ;
Ryu, Ji Hyun ;
Kim, Gun Woo ;
Kim, CheolGi ;
Park, Tae Gwan ;
Hyeon, Taeghwan .
ACS NANO, 2012, 6 (06) :5266-5273
[2]   Architectural Control of Seeded-Grown Magnetic-Semicondutor Iron Oxide-TiO2 Nanorod Heterostructures: The Role of Seeds in Topology Selection [J].
Buonsanti, Raffaella ;
Grillo, Vincenzo ;
Carlino, Elvio ;
Giannini, Cinzia ;
Gozzo, Fabia ;
Garcia-Hernandez, Mar ;
Angel Garcia, Miguel ;
Cingolani, Roberto ;
Cozzoli, P. Davide .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (07) :2437-2464
[3]   Design Maps for the Hyperthermic Treatment of Tumors with Superparamagnetic Nanoparticles [J].
Cervadoro, Antonio ;
Giverso, Chiara ;
Pande, Rohit ;
Sarangi, Subhasis ;
Preziosi, Luigi ;
Wosik, Jarek ;
Brazdeikis, Audrius ;
Decuzzi, Paolo .
PLOS ONE, 2013, 8 (02)
[4]   Scaling behaviour for the water transport in nanoconfined geometries [J].
Chiavazzo, Eliodoro ;
Fasano, Matteo ;
Asinari, Pietro ;
Decuzzi, Paolo .
NATURE COMMUNICATIONS, 2014, 5
[5]   Linear assemblies of magnetic nanoparticles as MRI contrast agents [J].
Corr, Serena A. ;
Byrne, Stephen J. ;
Tekoriute, Renata ;
Meledandri, Carla J. ;
Brougham, Dermot F. ;
Lynch, Marina ;
Kerskens, Christian ;
O'Dwyer, Laurence ;
Gun'ko, Yurii K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (13) :4214-+
[6]   Multifunctional magnetic-fluorescent nanocomposites for biomedical applications [J].
Corr, Serena A. ;
Rakovich, Yury P. ;
Gun'ko, Yurii K. .
NANOSCALE RESEARCH LETTERS, 2008, 3 (03) :87-104
[7]   Targeted delivery of magnetic aerosol droplets to the lung [J].
Dames, Petra ;
Gleich, Bernhard ;
Flemmer, Andreas ;
Hajek, Kerstin ;
Seidl, Nicole ;
Wiekhorst, Frank ;
Eberbeck, Dietmar ;
Bittmann, Iris ;
Bergemann, Christian ;
Weyh, Thomas ;
Trahms, Lutz ;
Rosenecker, Joseph ;
Rudolph, Carsten .
NATURE NANOTECHNOLOGY, 2007, 2 (08) :495-499
[8]   Physics of heat generation using magnetic nanoparticles for hyperthermia [J].
Dennis, Cindi L. ;
Ivkov, Robert .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2013, 29 (08) :715-729
[9]   Optimizing Magnetic Nanoparticle Based Thermal Therapies Within the Physical Limits of Heating [J].
Etheridge, M. L. ;
Bischof, J. C. .
ANNALS OF BIOMEDICAL ENGINEERING, 2013, 41 (01) :78-88
[10]   Effect of the Chain of Magnetosomes Embedded in Magnetotactic Bacteria and their Motility on Magnetic Resonance Imaging [J].
Felfoul, Ouajdi ;
Mokrani, Nisryn ;
Mohammadi, Mahmood ;
Martel, Sylvain .
2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, :4367-4370