LPI Radar Waveform Recognition Based on Deep Convolutional Neural Network Transfer Learning

被引:48
|
作者
Guo, Qiang [1 ]
Yu, Xin [1 ]
Ruan, Guoqing [2 ]
机构
[1] Harbin Engn Univ, Coll Informat & Telecommun, Harbin 150001, Heilongjiang, Peoples R China
[2] China Elect Technol Grp Corp, Res Inst 28, Key Lab Informat Syst Engn, Nanjing 210014, Jiangsu, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 04期
关键词
Low Probability of Intercept; CWD time-frequency analysis; Inception-v3; ResNet-152; transfer learning; GA ALGORITHM; CLASSIFICATION; SIGNALS;
D O I
10.3390/sym11040540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low Probability of Intercept (LPI) radar waveform recognition is not only an important branch of the electronic reconnaissance field, but also an important means to obtain non-cooperative radar information. To solve the problems of LPI radar waveform recognition rate, difficult feature extraction and large number of samples needed, an automatic classification and recognition system based on Choi-Williams distribution (CWD) and depth convolution neural network migration learning is proposed in this paper. First, the system performs CWD time-frequency transform on the LPI radar waveform to obtain a 2-D time-frequency image. Then the system preprocesses the original time-frequency image. In addition, then the system sends the pre-processed image to the pre-training model (Inception-v3 or ResNet-152) of the deep convolution network for feature extraction. Finally, the extracted features are sent to a Support Vector Machine (SVM) classifier to realize offline training and online recognition of radar waveforms. The simulation results show that the overall recognition rate of the eight LPI radar signals (LFM, BPSK, Costas, Frank, and T1-T4) of the ResNet-152-SVM system reaches 97.8%, and the overall recognition rate of the Inception-v3-SVM system reaches 96.2% when the SNR is -2 dB.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] LPI Radar Waveform Recognition Based on CNN and TPOT
    Wan, Jian
    Yu, Xin
    Guo, Qiang
    SYMMETRY-BASEL, 2019, 11 (05):
  • [2] Texture Image Recognition Based on Deep Convolutional Neural Network and Transfer Learning
    Wang J.
    Fan Y.
    Li Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (05): : 701 - 710
  • [3] Deep Learning Approach to LPI Radar Recognition
    Hoang, L. M.
    Kim, M. J.
    Kong, S. -H.
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,
  • [4] Plant Taxonomy In Hainan Based On Deep Convolutional Neural Network And Transfer Learning
    Liu, Wei
    Feng, Wenlong
    Huang, Mengxing
    Han, Guilai
    Lin, Jialun
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1462 - 1467
  • [5] CROP DISEASES IMAGE RECOGNITION BASED ON TRANSFER LEARNING WITH CONVOLUTIONAL NEURAL NETWORK
    Wu, Yongtang
    Tian, Hui
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (02): : 1147 - 1157
  • [6] Transfer Learning with deep Convolutional Neural Network for Underwater Live Fish Recognition
    Ben Tamou, Abdelouahid
    Benzinou, Abdesslam
    Nasreddine, Kamal
    Ballihi, Lahoucine
    2018 IEEE THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2018, : 204 - 209
  • [7] Weather Image Recognition Based on Convolutional Neural Network and Transfer Learning
    Gao, Zunhai
    Qiu, Yuzhan
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 631 - 638
  • [8] LPI Waveform Recognition Using Adaptive Feature Construction and Convolutional Neural Networks
    Huang, Hui
    Li, Yi
    Liu, Jiaoyue
    Shen, Dan
    Chen, Genshe
    Blasch, Erik
    Pham, Khanh
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2023, 38 (04) : 14 - 26
  • [9] Radar Based Object Recognition with Convolutional Neural Network
    Loi, Kin Chong
    Cheong, Pedro
    Choi, Wai Wa
    PROCEEDINGS OF THE 2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2019, : 87 - 89
  • [10] A Novel Deep Convolutional Neural Network Architecture Based on Transfer Learning for Handwritten Urdu Character Recognition
    Oziuddeen, Mohammed Aarif Kilvisharam
    Poruran, Sivakumar
    Caffiyar, Mohamed Yousuff
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2020, 27 (04): : 1160 - 1165