Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

被引:207
作者
Gehring, Tobias [1 ,2 ,3 ]
Haendchen, Vitus [1 ,2 ,4 ,5 ]
Duhme, Joerg [6 ]
Furrer, Fabian [7 ]
Franz, Torsten [6 ,8 ]
Pacher, Christoph [9 ]
Werner, Reinhard F. [6 ]
Schnabel, Roman [1 ,2 ,4 ,5 ]
机构
[1] Leibniz Univ Hannover, Max Planck Inst Gravitationphys, Albert Einstein Inst, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Inst Gravitationphys, D-30167 Hannover, Germany
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[4] Univ Hamburg, Inst Laserphys, D-22761 Hamburg, Germany
[5] Univ Hamburg, Zentrum Opt Quantentechnol, D-22761 Hamburg, Germany
[6] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[7] Univ Tokyo, Dept Phys, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan
[8] Tech Univ Carolo Wilhelmina Braunschweig, Inst Fachdidakt Naturwissensch, D-38106 Braunschweig, Germany
[9] AIT Austrian Inst Technol GmbH, Digital Safety & Secur Dept, Opt Quantum Technol, A-1200 Vienna, Austria
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
日本学术振兴会;
关键词
D O I
10.1038/ncomms9795
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
引用
收藏
页数:7
相关论文
共 43 条
  • [1] Device-independent security of quantum cryptography against collective attacks
    Acin, Antonio
    Brunner, Nicolas
    Gisin, Nicolas
    Massar, Serge
    Pironio, Stefano
    Scarani, Valerio
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (23)
  • [2] [Anonymous], 2013, P SPIE
  • [3] Barnault L, 2003, 2003 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, P70
  • [4] Ben-Or M, 2005, LECT NOTES COMPUT SC, V3378, P386
  • [5] QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM
    BENNETT, CH
    BRASSARD, G
    MERMIN, ND
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (05) : 557 - 559
  • [6] One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering
    Branciard, Cyril
    Cavalcanti, Eric G.
    Walborn, Stephen P.
    Scarani, Valerio
    Wiseman, Howard M.
    [J]. PHYSICAL REVIEW A, 2012, 85 (01):
  • [7] Side-Channel-Free Quantum Key Distribution
    Braunstein, Samuel L.
    Pirandola, Stefano
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (13)
  • [8] CARTER JL, 1979, J COMPUT SYST SCI, V18, P143, DOI 10.1016/0022-0000(79)90044-8
  • [9] Quantum distribution of Gaussian keys using squeezed states -: art. no. 052311
    Cerf, NJ
    Lévy, M
    Van Assche, G
    [J]. PHYSICAL REVIEW A, 2001, 63 (05) : 523111 - 523115
  • [10] Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations
    Diamanti, Eleni
    Leverrier, Anthony
    [J]. ENTROPY, 2015, 17 (09) : 6072 - 6092