Unified formalism for higher-order variational problems and its applications in optimal control

被引:4
|
作者
Colombo, Leonardo [1 ]
Daniel Prieto-Martinez, Pedro [2 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[2] Dept Matemat Aplicada 4, Barcelona 08034, Spain
关键词
Higher-order systems; Lagrangian and Hamiltonian mechanics; underactuated mechanical system; constrained variational calculus; optimal control; Skinner-Rusk formalism; LAGRANGIAN SYSTEMS; DYNAMICS; SUBMANIFOLDS; REDUCTION; MECHANICS;
D O I
10.1142/S0219887814500340
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider an intrinsic point of view to describe the equations of motion for higher-order variational problems with constraints on higher-order trivial principal bundles. Our techniques are an adaptation of the classical Skinner-Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics. As an interesting application we deduce the equations of motion for optimal control of underactuated mechanical systems defined on principal bundles.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] HIGHER-ORDER VARIATIONAL PROBLEMS ON LIE GROUPS AND OPTIMAL CONTROL APPLICATIONS
    Colombo, Leonardo
    Martin de Diego, David
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (04): : 451 - 478
  • [2] Higher-Order Constrained Variational Problems on Principal Bundles with Applications to Optimal Control of Underactuated Systems
    Colombo, Leonardo
    Gupta, Rohit
    Bloch, Anthony
    IFAC PAPERSONLINE, 2015, 48 (13): : 87 - 92
  • [3] THE HAMILTONIAN-FORMALISM IN HIGHER-ORDER VARIATIONAL-PROBLEMS - COMMENT
    FRANCAVIGLIA, M
    KRUPKA, D
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1985, 42 (02): : 213 - 213
  • [4] On the equivalence of higher order variational problems and optimal control problems
    Bloch, AM
    Crouch, PE
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 1648 - 1653
  • [5] Invariant Higher-Order Variational Problems
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    Communications in Mathematical Physics, 2012, 309 : 413 - 458
  • [6] Invariant Higher-Order Variational Problems
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 413 - 458
  • [7] Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control
    Leonardo Colombo
    Sebastián Ferraro
    David Martín de Diego
    Journal of Nonlinear Science, 2016, 26 : 1615 - 1650
  • [8] Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control
    Colombo, Leonardo
    Ferraro, Sebastian
    Martin de Diego, David
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (06) : 1615 - 1650
  • [9] Skinner-Rusk unified formalism for higher-order systems
    Daniel Prieto-Martinez, Pedro
    Roman-Roy, Narciso
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 216 - 220
  • [10] Invariant Higher-Order Variational Problems II
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    Journal of Nonlinear Science, 2012, 22 : 553 - 597