Recent Progress on Nonlinear Schrodinger Systems with Quadratic Interactions

被引:7
作者
Li, Chunhua [1 ]
Hayashi, Nakao [2 ]
机构
[1] Yanbian Univ, Dept Math, Coll Sci, Yanji 133002, Jilin, Peoples R China
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
KLEIN-GORDON EQUATIONS; SMALL AMPLITUDE SOLUTIONS; MODIFIED WAVE-OPERATORS; LONG-RANGE SCATTERING; GLOBAL EXISTENCE; LARGE TIME; ASYMPTOTICS; BEHAVIOR; DECAY;
D O I
10.1155/2014/214821
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study of nonlinear Schrodinger systems with quadratic interactions has attracted much attention in the recent years. In this paper, we summarize time decay estimates of small solutions to the systems under the mass resonance condition in 2-dimensional space. We show the existence of wave operators and modified wave operators of the systems under some mass conditions in.. dimensional space, where n >= 2. The existence of scattering operators and finite time blow-up of the solutions for the systems in higher space dimensions is also shown.
引用
收藏
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], ELECT J DIFFERENTIAL
[3]  
C Li, 2011, P 4 MSJ SI C NONL DY
[4]  
Cazenave, 2003, SEMILINEAR SCHRODING, V10
[5]  
Colin M, 2004, DIFFER INTEGRAL EQU, V17, P297
[6]   Stability of solitary waves for a system of nonlinear Schrodinger equations with three wave interaction [J].
Colin, M. ;
Colin, Th. ;
Ohta, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06) :2211-2226
[7]   Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions [J].
Delort, JM ;
Fang, DY ;
Xue, RY .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (02) :288-323
[8]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2 [J].
GINIBRE, J ;
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :619-645
[9]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[10]   MODIFIED SCATTERING OPERATOR FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION [J].
Guo, Zihua ;
Hayashi, Nakao ;
Lin, Yiquan ;
Naumkin, Pavel I. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) :3854-3871