Realizability of modules over TATE cohomology

被引:28
作者
Benson, D [1 ]
Krause, H
Schwede, S
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Munster, SFB Geometr Strukturen Math 478, D-48149 Munster, Germany
关键词
D O I
10.1090/S0002-9947-03-03373-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field and let G be a finite group. There is a canonical element in the Hochschild cohomology of the Tate cohomology gamma(G) is an element of HH3,-1 (H) over cap*(G,k) with the following property. Given a graded (H) over cap*(G,k)-module X, the image of gamma(G) in Ext((H) over cap*(G,k))(3,-1) (X,X) vanishes if and only if X is isomorphic to a direct summand of (H) over cap*(G, M) for some kG-module M. The description of the realizability obstruction works in any triangulated category with direct sums. We show that in the case of the derived category of a differential graded algebra A, there is also a canonical element of Hochschild cohomology HH3,-1 H*(A) which is a predecessor for these obstructions.
引用
收藏
页码:3621 / 3668
页数:48
相关论文
共 42 条
[1]   PREPROJECTIVE MODULES OVER ARTIN ALGEBRAS [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1980, 66 (01) :61-122
[2]  
Baues H.-J., 1989, K-THEORY, V3, P307, DOI [10/cz89mb, DOI 10.1007/BF00584524]
[3]  
Baues HJ, 1996, Q J MATH, V47, P405
[4]   On the cohomology of categories, universal Toda brackets and homotopy pairs [J].
Baues, HJ .
K-THEORY, 1997, 11 (03) :259-285
[5]  
BEILINSON AA, 1982, ANAL TOPOLOGY SINGUL, V1, P5
[6]  
Benson, 1991, CAMBRIDGE STUDIES AD, V30
[7]  
Benson DJ, 1997, J ALGEBRA, V193, P260, DOI 10.1006/jabr.1996.6996
[8]   Complexity and varieties for infinite groups .2. [J].
Benson, DJ .
JOURNAL OF ALGEBRA, 1997, 193 (01) :288-317
[9]   PRODUCTS IN NEGATIVE COHOMOLOGY [J].
BENSON, DJ ;
CARLSON, JF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 82 (02) :107-129
[10]   Phantom maps and purity in modular representation theory, II [J].
Benson, DJ ;
Gnacadja, GP .
ALGEBRAS AND REPRESENTATION THEORY, 2001, 4 (04) :395-404