Locally D-optimal designs for non-linear models on the k-dimensional ball

被引:2
作者
Radloff, Martin [1 ]
Schwabe, Rainer [1 ]
机构
[1] Otto von Guericke Univ, Inst Math Stochast, PF 4120, D-39016 Magdeburg, Germany
关键词
Censored data; Generalized linear models; k-dimensional ball; Multiple regression models; Negative binomial regression; Poisson regression; REGRESSION;
D O I
10.1016/j.jspi.2019.03.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we construct (locally) D-optimal designs for a wide class of non-linear multiple regression models, when the design region is a k-dimensional ball. For this construction we make use of the concept of invariance and equivariance in the context of optimal designs. As examples we consider Poisson and negative binomial regression as well as proportional hazard models with censoring. By generalization we can extend these results to arbitrary ellipsoids as design regions. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1974, Measure Theory
[2]  
[Anonymous], 1972, Theory of optimal experiments
[3]   Elemental information matrices and optimal experimental design for generalized regression models [J].
Atkinson, Anthony C. ;
Fedorov, Valerii V. ;
Herzberg, Agnes M. ;
Zhang, Rongmei .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 144 :81-91
[4]   MARGINALLY RESTRICTED D-OPTIMAL DESIGNS [J].
COOK, RD ;
THIBODEAU, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1980, 75 (370) :366-371
[5]  
Farrell R., 1967, P 5 BERK S MATH STAT, V1, P113
[6]  
Kiefer J., P 4 BERK S MATH STAT, V1, P381
[7]  
Kiefer J., 1960, Can. J. Math., V12, P363, DOI [10.4153/CJM-1960-030-4, DOI 10.4153/CJM-1960-030-4]
[8]  
Klenke A., 2014, Probability Theory: A Comprehensive Course
[9]   OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR MODELS WITH APPLICATION TO SURVIVAL MODELS [J].
Konstantinou, Maria ;
Biedermann, Stefanie ;
Kimber, Alan .
STATISTICA SINICA, 2014, 24 (01) :415-U455
[10]  
McCulloch C.E., 2001, Wiley series in probability and statistics. Applied probability and statistics section, P220