Hollow Fe-containing carbon fibers with tubular tertiary structure: preparation and Li-storage properties

被引:28
作者
Adelhelm, Philipp [2 ]
Hu, Yong-Sheng [1 ,4 ]
Antonietti, Markus [3 ]
Maier, Joachim [4 ]
Smarsly, Bernd M. [5 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China
[2] Univ Utrecht, Debye Inst NanoMat Sci, NL-3584 CA Utrecht, Netherlands
[3] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany
[4] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[5] Univ Giessen, Inst Phys Chem, D-35390 Giessen, Germany
关键词
ELECTRODE MATERIALS; HYDROGEN STORAGE; THERMAL-DECOMPOSITION; NANOTUBES; NANOFIBERS; PERFORMANCE; PLATINUM; CATALYST; COMPOSITES; FILAMENTS;
D O I
10.1039/b818452f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hollow carbon fibers with a defined tubular cross-section were obtained by simply heating poly(styrene) in the presence of iron salts. The structures possess a high content of mesoporosity and macroporosity. The carbon itself is characterized by a well-developed sp(2)-graphene structure. When used as anode material in lithium ion batteries, a remarkably high reversible capacity as high as 860 mAh/g was observed, which is attributed to both the morphology of the carbon and the incorporation of iron species.
引用
收藏
页码:1616 / 1620
页数:5
相关论文
共 38 条
[1]   Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates [J].
Adelhelm, Philipp ;
Hu, Yong-Sheng ;
Chuenchom, Laemthong ;
Antonietti, Markus ;
Smarsly, Bernd M. ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (22) :4012-+
[2]   Nanotechnology - How does a nanofibre grow? [J].
Ajayan, PM .
NATURE, 2004, 427 (6973) :402-403
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Synthesis of carbon nanotubes from bulk polymer [J].
Cho, WS ;
Hamada, E ;
Kondo, Y ;
Takayanagi, K .
APPLIED PHYSICS LETTERS, 1996, 69 (02) :278-279
[5]   Iron-carbon composites as electrode materials in lithium batteries [J].
Concheso, A. ;
Santamaria, R. ;
Menendez, R. ;
Jimenez-Mateos, J. M. ;
Alcantara, R. ;
Lavela, P. ;
Tirado, J. L. .
CARBON, 2006, 44 (09) :1762-1772
[6]   Carbon nanofibers: Catalytic synthesis and applications [J].
De Jong, KP ;
Geus, JW .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2000, 42 (04) :481-510
[7]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[8]   Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions [J].
Ding, J ;
Chan, KY ;
Ren, JW ;
Xiao, FS .
ELECTROCHIMICA ACTA, 2005, 50 (15) :3131-3141
[9]   High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries [J].
Hassoun, Jusef ;
Panero, Stefania ;
Simon, Patrice ;
Taberna, Pierre Louis ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (12) :1632-+
[10]   Atomic-scale imaging of carbon nanofibre growth [J].
Helveg, S ;
López-Cartes, C ;
Sehested, J ;
Hansen, PL ;
Clausen, BS ;
Rostrup-Nielsen, JR ;
Abild-Pedersen, F ;
Norskov, JK .
NATURE, 2004, 427 (6973) :426-429