On the Existence of Control Lyapunov Functions and State-Feedback Laws for Hybrid Systems

被引:27
作者
Sanfelice, Ricardo G. [1 ]
机构
[1] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Asymptotic stability; hybrid control; hybrid systems; set-valued analysis; selections; STABILIZATION; STABILITY;
D O I
10.1109/TAC.2013.2264851
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a class of hybrid systems given in terms of constrained differential and difference equations/inclusions, we study the existence of control Lyapunov functions when compact sets are asymptotically stable as well as the stabilizability properties guaranteed when control Lyapunov functions exist. An existence result asserting that asymptotic stabilizability of a compact set implies the existence of a smooth control Lyapunov function is established. When control Lyapunov functions are available, conditions guaranteeing the existence of stabilizing continuous state-feedback control laws are provided.
引用
收藏
页码:3242 / 3248
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 1998, Variational Analysis
[2]   STABILIZATION WITH RELAXED CONTROLS [J].
ARTSTEIN, Z .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) :1163-1173
[3]   Feedback stabilization and Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Rifford, L ;
Stern, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :25-48
[4]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407
[5]  
Freeman R. A., 1996, Robust Nonlinear Control Design
[6]   Solutions to hybrid inclusions via set and graphical convergence with stability theory applications [J].
Goebel, R ;
Teel, AR .
AUTOMATICA, 2006, 42 (04) :573-587
[7]  
Goebel R., 2012, Hybrid Dynamical Systems: Model-ing, Stability, and Robustness
[8]   Hybrid Dynamical Systems [J].
Goebel, Rafal ;
Sanfelice, Ricardo G. ;
Teel, Andrew R. .
IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (02) :28-93
[9]   Discrete-time asymptotic controllability implies smooth control-Lyapunov function [J].
Kellett, CM ;
Teel, AR .
SYSTEMS & CONTROL LETTERS, 2004, 52 (05) :349-359
[10]   Weak converse Lyapunov theorems and control-Lyapunov functions [J].
Kellett, CM ;
Teel, AR .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) :1934-1959