Utilizing Chromium as the Photoanode Substrate in Dye-Sensitized Solar Cells

被引:7
作者
Behrouznejad, Fatemeh [1 ]
Taghavinia, Nima [1 ,2 ]
机构
[1] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 14588, Iran
[2] Sharif Univ Technol, Dept Phys, Tehran 14588, Iran
关键词
charge transfer; chromium; conducting materials; dye-sensitized solar cells; TiO2 colloidal sol; STAINLESS-STEEL SUBSTRATE; TIO2 NANOTUBE ARRAYS; COUNTER ELECTRODES; MESHES; PERFORMANCE; FABRICATION; SHEET; FILMS;
D O I
10.1002/celc.201300235
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Fluorine-doped tin oxide (FTO) is replaced with chromium as the photoanode substrate in a dye-sensitized solar cell (DSSC), and the effect of chromium(III) oxide on the electron lifetime and the performance of a Cr-based DSSC is investigated and compared with conventional FTO-based devices. It is shown that Cr is stable in the chemically aggressive iodide-based electrolyte, which can be attributed to the compact oxide overlayer. The chromium-oxide layer also effectively blocks electron recombination from the substrate, while hindering electron transfer from the TiO2 film to the Cr electrode. We show that pretreatment of the electrodeposited Cr film with a colloidal sol of TiO2 is extremely effective in reducing the electron-transfer resistance at the Cr-TiO2 interface. This effect may be attributed to both increasing interconnections between the mesoporous layer of TiO2 and the rough electrodeposited layer of Cr, as well as inhibition of the thickening Cr2O3 layer during the thermal process. The colloidal sol treatment increases the cell efficiency by 73% of the initial value (from 2.58 to 4.47%) and the fill factor from 0.38 to 0.64.
引用
收藏
页码:944 / 950
页数:7
相关论文
共 31 条
[1]   How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? [J].
Cameron, PJ ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15) :7392-7398
[2]  
Dennis JK., 1993, Nickel and Chromium Plating, V3rd
[3]   Conductive mesh based flexible dye-sensitized solar cells [J].
Fan, Xing ;
Wang, Fuzhi ;
Chu, Zengze ;
Chen, Lin ;
Zhang, Chao ;
Zou, Dechun .
APPLIED PHYSICS LETTERS, 2007, 90 (07)
[4]   Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells [J].
Fang, XM ;
Ma, TL ;
Akiyama, M ;
Guan, GQ ;
Tsunematsu, S ;
Abe, E .
THIN SOLID FILMS, 2005, 472 (1-2) :242-245
[5]  
Hardin BE, 2012, NAT PHOTONICS, V6, P162, DOI [10.1038/nphoton.2012.22, 10.1038/NPHOTON.2012.22]
[6]   Stainless steel mesh-based flexible quasi-solid dye-sensitized solar cells [J].
Huang, Xianwei ;
Shen, Ping ;
Zhao, Bin ;
Feng, Xiaoming ;
Jiang, Shenghui ;
Chen, Huajie ;
Li, Hui ;
Tan, Songting .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (06) :1005-1010
[7]   A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate [J].
Kang, MG ;
Park, NG ;
Ryu, KS ;
Chang, SH ;
Kim, KJ .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (05) :574-581
[8]   An investigation of the electrolytic solution effects on stainless steel electrode for dye-sensitized solar cells [J].
Kanta, A. -F. ;
Decroly, A. .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (03) :843-846
[9]   Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells [J].
Kuang, Daibin ;
Brillet, Jeremie ;
Chen, Peter ;
Takata, Masakazu ;
Uchida, Satoshi ;
Miura, Hidetoshi ;
Sumioka, Kohichi ;
Zakeeruddin, Shaik. M. ;
Graetzel, Michael .
ACS NANO, 2008, 2 (06) :1113-1116
[10]   Vertically Oriented TiO2 Nanotube Arrays Grown on Ti Meshes for Flexible Dye-Sensitized Solar Cells [J].
Liu, Zhaoyue ;
Subramania, Vaidyanathan ;
Misra, Mano .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (31) :14028-14033