Band-pass Fabry-Perot magnetic tunnel junctions

被引:27
作者
Sharma, Abhishek [1 ]
Tulapurkar, Ashwin. A. [1 ]
Muralidharan, Bhaskaran [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
关键词
SPIN-TRANSFER TORQUE; MAGNETORESISTANCE; DRIVEN; SUPERLATTICE; TRANSPORT; EMISSION;
D O I
10.1063/1.5023159
中图分类号
O59 [应用物理学];
学科分类号
摘要
We propose a high-performance magnetic tunnel junction by making electronic analogs of optical phenomena such as anti-reflections and Fabry-Perot resonances. The devices we propose feature anti-reflection enabled superlattice heterostructures sandwiched between the fixed and the free ferromagnets of the magnetic tunnel junction structure. Our predictions are based on non-equilibrium Green's function spin transport formalism coupled self-consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation. Owing to the physics of bandpass spin filtering in the bandpass Fabry-Perot magnetic tunnel junction device, we demonstrate an ultra-high boost in the tunnel magneto-resistance (approximate to 5 x 10(4)%) and nearly 1200% suppression of spin transfer torque switching bias in comparison to a traditional trilayer magnetic tunnel junction device. The proof of concepts presented here can lead to next-generation spintronic device design harvesting the rich physics of superlattice heterostructures and exploiting spintronic analogs of optical phenomena. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Observation of Electron Coherence and Fabry-Perot Standing Waves at a Graphene Edge
    Allen, Monica T.
    Shtanko, Oles
    Fulga, Ion C.
    Wang, Joel I. -J.
    Nurgaliev, Daniyar
    Watanabe, Kenji
    Taniguchi, Takashi
    Akhmerov, Anton R.
    Jarillo-Herrero, Pablo
    Leyitov, Leonid S.
    Yacoby, Amir
    NANO LETTERS, 2017, 17 (12) : 7380 - 7386
  • [32] Electrically pumped lasing from Ge Fabry-Perot resonators on Si
    Koerner, Roman
    Oehme, Michael
    Gollhofer, Martin
    Schmid, Marc
    Kostecki, Konrad
    Bechler, Stefan
    Widmann, Daniel
    Kasper, Erich
    Schulze, Joerg
    OPTICS EXPRESS, 2015, 23 (11): : 14815 - 14822
  • [33] Large Diode Sensitivity of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions
    Ishibashi, Shota
    Seki, Takeshi
    Nozaki, Takayuki
    Kubota, Hitoshi
    Yakata, Satoshi
    Fukushima, Akio
    Yuasa, Shinji
    Maehara, Hiroki
    Tsunekawa, Koji
    Djayaprawira, David D.
    Suzuki, Yoshishige
    APPLIED PHYSICS EXPRESS, 2010, 3 (07)
  • [34] Magnetic Configurations and State Diagram of Nanoring Magnetic Tunnel Junctions
    Liu, Houfang
    Wei, Hongxiang
    Han, Xiufeng
    Yu, Guoqiang
    Zhan, Wenshan
    Le Gall, Sylvain
    Lu, Yuan
    Hehn, Michel
    Mangin, Stephane
    Sun, Mingjuan
    Liu, Yaowen
    Horng, Cheng
    PHYSICAL REVIEW APPLIED, 2018, 10 (05):
  • [35] Magnetic tunnel junctions (MTJs)
    BAI Haili & JIANG EnyongDepartment of Applied Physics
    ChineseScienceBulletin, 2001, (09) : 709 - 716
  • [36] Photoconductance in magnetic tunnel junctions
    Koller, PHP
    Vanhelmont, FWM
    Coehoorn, R
    de Jonge, WJM
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) : 2712 - 2714
  • [37] Electrically driven random lasing from a modified Fabry-Perot laser diode
    Consoli, Antonio
    Caselli, Niccolo
    Lopez, Cefe
    NATURE PHOTONICS, 2022, 16 (03) : 219 - +
  • [38] Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities
    Wang, L. P.
    Lee, B. J.
    Wang, X. J.
    Zhang, Z. M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (13-14) : 3024 - 3031
  • [39] Quantum and classical confinement of resonant states in a trilayer graphene Fabry-Perot interferometer
    Campos, L. C.
    Young, A. F.
    Surakitbovorn, K.
    Watanabe, K.
    Taniguchi, T.
    Jarillo-Herrero, P.
    NATURE COMMUNICATIONS, 2012, 3
  • [40] Tunable strong coupling of two adjacent optical λ/2 Fabry-Perot microresonators
    Junginger, Achim
    Wackenhut, Frank
    Stuhl, Alexander
    Blendinger, Felix
    Brecht, Marc
    Meixner, Alfred J.
    OPTICS EXPRESS, 2020, 28 (01): : 485 - 493