Mimetic scalar products of discrete differential forms

被引:24
作者
Brezzi, F. [1 ,2 ,3 ]
Buffa, A. [2 ]
Manzini, G. [2 ,3 ,4 ]
机构
[1] KAU, Jeddah, Saudi Arabia
[2] CNR, IMATI, I-27100 Pavia, Italy
[3] IUSS Pavia, Ctr Simulaz Numer Avanzata CeSNA, I-27100 Pavia, Italy
[4] Los Alamos Natl Lab, Div Theoret, Grp T5, Los Alamos, NM 87545 USA
关键词
Discrete differential form; Mimetic finite difference method; Polyhedral mesh; FINITE-VOLUME METHOD; ELEMENT EXTERIOR CALCULUS; DIFFUSION-PROBLEMS; CONVERGENCE ANALYSIS; NATURAL DISCRETIZATIONS; MAXWELLS EQUATIONS; NUMERICAL-SOLUTION; ELLIPTIC PROBLEMS; ERROR ESTIMATOR; STOKES PROBLEM;
D O I
10.1016/j.jcp.2013.08.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a strategy for the systematic construction of the mimetic inner products on cochain spaces for the numerical approximation of partial differential equations on unstructured polygonal and polyhedral meshes. The mimetic inner products are locally built in a recursive way on each k-cell and, then, globally assembled. This strategy is similar to the implementation of the finite element methods. The effectiveness of this approach is documented by deriving mimetic discretizations and testing their behavior on a set of problems related to the Maxwell equations. Published by Elsevier Inc.
引用
收藏
页码:1228 / 1259
页数:32
相关论文
共 90 条
[1]   Multiscale mixed/mimetic methods on corner-point grids [J].
Aarnes, Jorg E. ;
Krogstad, Stein ;
Lie, Knut-Andreas .
COMPUTATIONAL GEOSCIENCES, 2008, 12 (03) :297-315
[2]   Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes [J].
Andreianov, Boris ;
Boyer, Franck ;
Hubert, Florence .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) :145-195
[3]  
[Anonymous], NUMER METH PDES
[4]  
[Anonymous], 1995, HOUSTON J MATH
[5]   A MIMETIC DISCRETIZATION OF ELLIPTIC OBSTACLE PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Verani, Marco .
MATHEMATICS OF COMPUTATION, 2013, 82 (283) :1379-1400
[6]   HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Lovadina, Carlo ;
Verani, Marco .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :654-675
[7]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[8]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[9]  
Batista ED, 2008, ELECTRON T NUMER ANA, V34, P152
[10]   A second-order maximum principle preserving finite volume method for steady convection-diffusion problems [J].
Bertolazzi, E ;
Manzini, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2172-2199