Cas9-chromatin binding information enables more accurate CRISPR off-target prediction

被引:159
|
作者
Singh, Ritambhara [1 ,2 ]
Kuscu, Cem [1 ]
Quinlan, Aaron [1 ,3 ,4 ]
Qi, Yanjun [2 ]
Adli, Mazhar [1 ]
机构
[1] Univ Virginia, Sch Med, Dept Biochem & Mol Genet, Charlottesville, VA 22903 USA
[2] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22903 USA
[3] Univ Virginia, Ctr Publ Hlth Genom, Charlottesville, VA 22903 USA
[4] Univ Virginia, Dept Publ Hlth Sci, Charlottesville, VA 22903 USA
关键词
RNA-GUIDED ENDONUCLEASES; HUMAN-CELLS; HUMAN GENOME; CAS NUCLEASES; SYSTEM; SITES; TOOL; IDENTIFICATION; SPECIFICITY; ACTIVATION;
D O I
10.1093/nar/gkv575
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Prediction of Off-Target Effects in CRISPR/Cas9 System by Ensemble Learning
    Fan, Yongxian
    Xu, Haibo
    CURRENT BIOINFORMATICS, 2021, 16 (09) : 1169 - 1178
  • [2] Prediction of off-target effects of the CRISPR/Cas9 system for design of sgRNA
    Guo, Calvin
    Zhen, David
    2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020), 2020, 185
  • [3] Effective use of sequence information to predict CRISPR-Cas9 off-target
    Zhang, Zhong-Rui
    Jiang, Zhen-Ran
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 650 - 661
  • [4] Off-target Effect of CRISPR/Cas9 and Optimization
    Guo Quan-Juan
    Han Qiu-Ju
    Zhang Jian
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2018, 45 (08) : 798 - 807
  • [5] Massively parallel CRISPR off-target detection enables rapid off-target prediction model building
    Tian, Rui
    Cao, Chen
    He, Dan
    Dong, Dirong
    Sun, Lili
    Liu, Jiashuo
    Chen, Ye
    Wang, Yuyan
    Huang, Zheying
    Li, Lifang
    Jin, Zhuang
    Huang, Zhaoyue
    Xie, Hongxian
    Zhao, Tingting
    Zhong, Chaoyue
    Hong, Yongfeng
    Hu, Zheng
    MED, 2023, 4 (07): : 478 - +
  • [6] Force induced off-target binding of CRISPR/Cas9 with single molecule resolution
    Newton, M. D.
    Driessen, R.
    Taylor, B. J.
    Cuomo, E.
    Rueda, D.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S146 - S146
  • [7] CRISPR-DIPOFF: an interpretable deep learning approach for CRISPR Cas-9 off-target prediction
    Toufikuzzaman, Md
    Samee, Md Abul Hassan
    Rahman, M. Sohel
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [8] Validation of an In Vitro CRISPR-Cas9 Off-Target Prediction Method in Rhesus Macaques
    AlJanahi, Aisha A.
    Lazzarotto, Cicera
    Yu, Kyung-Rok
    Hong, So Gun
    Chen, Shirley
    Donahue, Robert
    Li, Yuesheng
    Shin, Taehoon
    Tsai, Shengdar
    Dunbar, Cynthia
    MOLECULAR THERAPY, 2018, 26 (05) : 85 - 86
  • [9] Structure and dynamics of off-target effects in CRISPR-Cas9
    Arantes, Pablo R.
    Mitchell, Brandon P.
    Saha, Aakash
    Nierzwicki, Lukasz
    Pacesa, Martin
    Jinek, Martin
    Palermo, Giulia
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 190A - 190A
  • [10] Battling CRISPR-Cas9 off-target genome editing
    Daisy Li
    Hong Zhou
    Xiao Zeng
    Cell Biology and Toxicology, 2019, 35 : 403 - 406