Spatiotemporal Characterization of a Conical Swirler Flow Field Under Strong Forcing

被引:60
作者
Lacarelle, A. [1 ]
Faustmann, T. [1 ]
Greenblatt, D. [2 ]
Paschereit, C. O. [1 ]
Lehmann, O. [1 ]
Luchtenburg, D. M. [1 ]
Noack, B. R. [1 ]
机构
[1] Tech Univ Berlin, Inst Stromungsmech & Tech Akust, D-10623 Berlin, Germany
[2] Technion Israel Inst Technol, Fac Mech Engn, IL-32000 Haifa, Israel
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2009年 / 131卷 / 03期
关键词
chemically reactive flow; combustion; combustion equipment; Doppler measurement; engines; flow instability; flow visualisation; fluid oscillations; fuel systems; gas turbines; hydrodynamics; laser velocimetry; matrix decomposition; particle velocity analysis; spatiotemporal phenomena; turbulence; vortices; PHASE-AVERAGING METHOD; COHERENT STRUCTURES; VORTEX BREAKDOWN; JET;
D O I
10.1115/1.2982139
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, a spatiotemporal characterization of forced and unforced flows of a conical swirler is performed based on particle image velocimetry (PIV) and laser Doppler anemometry (LDA). The measurements are performed at a Reynolds number of 33,000 and a swirl number of 0.71. Axisymmetric forcing is applied to approximate the effects of thermoacoustic instabilities on the flow field at the burner inlet and outlet. The actuation frequencies are set at the natural flow frequency (Strouhal number St(f)approximate to 0.92) and two higher frequencies (St(f)approximate to 1.3 and 1.55) that are not harmonically related to the natural frequency. Phase-averaged measurement are used as a first step to visualize the coherent flow structures. Second, proper orthogonal decomposition (POD) is applied to the PIV data to characterize the effect of the actuation on the fluctuating flow. Measurements indicate a typical natural flow instability of helical nature in the unforced case. The associated induced pressure and flow oscillations travel upstream to the swirler inlet where generally fuel is injected. This observation is of critical importance with respect to the stability of the combustion. Harmonic actuation at different frequencies and amplitudes does not affect the mean velocity profile at the outlet, while the coherent velocity fluctuations are strongly influenced at both the inlet and outlet. On one hand, the dominant helical mode is replaced by an axisymmetric vortex ring if the flow is forced at the natural flow frequency. On the other hand, the natural flow frequency prevails at the outlet under forcing at higher frequencies and POD analysis indicates that the helical structure is still present. The presented results give new insight into the flow dynamics of a swirling flow burner under strong forcing.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 28 条
  • [1] Time domain modelling and stability analysis of complex thermoacoustic systems
    Bothien, M. R.
    Moeck, J. P.
    Lacarelle, A.
    Paschereit, C. O.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2007, 221 (A5) : 657 - 668
  • [2] DOBBELING K, 1994, 94GT394 ASME
  • [3] DUWIG C, 2007, GT200727006 ASME
  • [4] RECIRCULATION IN SWIRLING FLOW - A MANIFESTATION OF VORTEX BREAKDOWN
    ESCUDIER, MP
    KELLER, JJ
    [J]. AIAA JOURNAL, 1985, 23 (01) : 111 - 116
  • [5] An analysis of unsteady highly turbulent swirling flow in a model vortex combustor
    Fernandes, EC
    Heitor, MV
    Shtork, SI
    [J]. EXPERIMENTS IN FLUIDS, 2006, 40 (02) : 177 - 187
  • [6] FLOHR P, 2002, 200239317 IMECE
  • [7] Mode selection in swirling jet experiments: a linear stability analysis
    Gallaire, F
    Chomaz, JM
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 494 : 223 - 253
  • [8] Holmes P., 1998, Turbulence, Coherent Structures, Dynamical Systems and Symmetry
  • [9] KELLER JJ, 1991, P CIMAC 19 INT C COM
  • [10] Response of unconfined vortex breakdown to axial pulsing
    Khalil, S
    Hourigan, K
    Thompson, MC
    [J]. PHYSICS OF FLUIDS, 2006, 18 (03)