3D printing of biomimetic microstructures for cancer cell migration

被引:188
|
作者
Huang, Tina Qing [1 ]
Qu, Xin [1 ]
Liu, Justin [2 ]
Chen, Shaochen [1 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, San Diego, CA 92093 USA
[2] Univ Calif San Diego, Dept Mat Sci & Engn, San Diego, CA 92093 USA
基金
美国国家科学基金会;
关键词
3D printing; Cancer cell migration; Microchip; Hydrogel; TISSUE ENGINEERING APPLICATIONS; IN-VITRO; PROJECTION STEREOLITHOGRAPHY; TUMOR-METASTASIS; POISSONS RATIO; CONFINEMENT; SCAFFOLDS; MODEL; ANGIOGENESIS; FABRICATION;
D O I
10.1007/s10544-013-9812-6
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10 T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10 T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10 T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10 T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 50 条
  • [21] 3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration
    Feng, Chun
    Zhang, Wenjie
    Deng, Cuijun
    Li, Guanglong
    Chang, Jiang
    Zhang, Zhiyuan
    Jiang, Xinquan
    Wu, Chengtie
    ADVANCED SCIENCE, 2017, 4 (12):
  • [22] 3D Printing and Property of Biomimetic Hydroxyapatite Scaffold
    Zhao, Xueni
    Li, Lingna
    Zhang, Yu
    Liu, Zhaoyang
    Xing, Haotian
    Gu, Zexin
    BIOMIMETICS, 2024, 9 (11)
  • [23] 3D printing of PEGDA/bioceramic for guiding cell adhesion and migration
    Chen, Qinghua
    Zou, Bin
    Zhao, Yun
    Wang, Xinfeng
    Zhou, Xingguo
    Lai, Qingguo
    SURFACES AND INTERFACES, 2024, 48
  • [24] Two-photon polymerization 3D printing of biomimetic microstructures for functionalizing surfaces to inhibit bacterial growth
    Zhu, Wentao
    Huo, Fang-Yi
    Cao, Lei-Ming
    Li, Zi-Zhan
    Zhu, Qian
    He, Rongxiang
    Chen, Bolei
    Liang, Yong
    Cai, Bo
    He, Hong
    Bu, Lin-Lin
    Hu, Ligang
    CHEMICAL ENGINEERING JOURNAL, 2025, 511
  • [25] 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering
    Chang, Hyun Kyung
    Yang, Dae Hyeok
    Ha, Mi Yeon
    Kim, Hyun Joo
    Kim, Chun Ho
    Kim, Sae Hyun
    Choi, Jae Won
    Chun, Heung Jae
    CARBOHYDRATE POLYMERS, 2022, 287
  • [26] 3D Printing of Silk Fibroin for Biomedical Applications
    Wang, Qiusheng
    Han, Guocong
    Yan, Shuqin
    Zhang, Qiang
    MATERIALS, 2019, 12 (03)
  • [27] The Applications of 3D Printing for Craniofacial Tissue Engineering
    Tao, Owen
    Kort-Mascort, Jacqueline
    Lin, Yi
    Pham, Hieu M.
    Charbonneau, Andre M.
    ElKashty, Osama A.
    Kinsella, Joseph M.
    Tran, Simon D.
    MICROMACHINES, 2019, 10 (07)
  • [28] Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing
    Yang, Yang
    Chen, Zeyu
    Song, Xuan
    Zhang, Zhuofeng
    Zhang, Jun
    Shung, K. Kirk
    Zhou, Qifa
    Chen, Yong
    ADVANCED MATERIALS, 2017, 29 (11)
  • [29] 3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles
    Aavani, Farzaneh
    Biazar, Esmaeil
    Kheilnezhad, Bahareh
    Amjad, Fatemeh
    CURRENT STEM CELL RESEARCH & THERAPY, 2022, 17 (05) : 415 - 439
  • [30] Structural Mechanical Properties of 3D Printing Biomimetic Bone Replacement Materials
    Lv, Xueman
    Wang, Shuo
    Xu, Zihe
    Liu, Xuanting
    Liu, Guoqin
    Cao, Feipeng
    Ma, Yunhai
    BIOMIMETICS, 2023, 8 (02)