Well-posedness of a Debye type system endowed with a full wave equation

被引:1
作者
Heibig, Arnaud [1 ]
机构
[1] Univ Lyon, Inst Camille Jordan, INSA Lyon, Bat Leonard de Vinci 401,21 Ave Jean Capelle, F-69621 Villeurbanne, France
关键词
Transport-diffusion equation; Wave equation; Debye system; Chemin-Lerner spaces; Gagliardo-Nirenberg inequalities; TIME BEHAVIOR; EXISTENCE;
D O I
10.1016/j.aml.2018.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove well-posedness for a transport-diffusion problem coupled with a wave equation for the potential. We assume that the initial data are small. A bilinear form in the spirit of Kato's proof for the Navier-Stokes equations is used, coupled with suitable estimates in Chemin-Lerner spaces. In the one dimensional case, we get well-posedness for arbitrarily large initial data by using Gagliardo-Nirenberg inequalities. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 10 条
[1]  
Bahouri Hajer, 2011, FOURIER ANAL NONLINE, V343
[2]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[3]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[4]   GLOBAL EXISTENCE FOR THE INCOMPRESSIBLE NAVIER-STOKES SYSTEM [J].
CHEMIN, JY .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (01) :20-28
[5]   GLOBAL REGULARITY OF SOLUTIONS OF COUPLED NAVIER-STOKES EQUATIONS AND NONLINEAR FOKKER PLANCK EQUATIONS [J].
Constantin, Peter ;
Seregin, Gregory .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (04) :1185-1196
[7]   A NONSTATIONARY PROBLEM IN THE THEORY OF ELECTROLYTES [J].
KRZYWICKI, A ;
NADZIEJA, T .
QUARTERLY OF APPLIED MATHEMATICS, 1992, 50 (01) :105-107
[8]  
Lemarie-Rieusset P. G., 2002, RECENTS DEV NAVIER S
[9]   THE NAVIER-STOKES INITIAL VALUE-PROBLEM IN LP [J].
WEISSLER, FB .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1980, 74 (03) :219-230
[10]   Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system [J].
Winkler, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (05) :748-767