EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study

被引:27
|
作者
Puttick, Simon
Stringer, Brett W.
Day, Bryan W.
Bruce, Zara C.
Ensbey, Kathleen S.
Mardon, Karine
Cowin, Gary J.
Thurecht, Kristofer J.
Whittaker, Andrew K.
Fay, Michael
Boyd, Andrew W.
Rose, Stephen
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld, Australia
[2] Univ Queensland, Ctr Adv Imaging, St Lucia, Qld, Australia
[3] QIMR Berghofer Med Res Inst, Herston, Qld, Australia
[4] Australian Natl Imaging Facil, Queensland Node, Brisbane, Qld, Australia
[5] ARC Ctr Excellence Convergent Bionano Sci & Techn, Queensland Node, Brisbane, Qld, Australia
[6] Queensland Hlth Royal Brisbane & Womens Hosp, Herston, Qld, Australia
[7] CSIRO, Australian E Hlth Res Ctr, Herston, Qld, Australia
来源
MOLECULAR IMAGING | 2015年 / 14卷
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
EPHB4; RECEPTORS; CANCER; TUMOR; ANTIBODY; PET; THERAPY; EPHRINS; SPECT; MRI;
D O I
10.2310/7290.2015.00008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Noninvasive imaging is a critical technology for diagnosis, classification, and subsequent treatment planning for patients with glioblastoma. It has been shown that the EphA2 receptor tyrosine kinase (RTK) is overexpressed in a number of tumors, including glioblastoma. Expression levels of Eph RTKs have been linked to tumor progression, metastatic spread, and poor patient prognosis. As EphA2 is expressed at low levels in normal neural tissues, this protein represents an attractive imaging target for delineation of tumor infiltration, providing an improved platform for image-guided therapy. In this study, EphA2-4B3, a monoclonal antibody specific to human EphA2, was labeled with Cu-64 through conjugation to the chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The resulting complex was used as a positron emission tomography (PET) tracer for the acquisition of high-resolution longitudinal PET/magnetic resonance images. EphA2-4B3-NOTA-Cu-64 images were qualitatively and quantitatively compared to the current clinical standards of [F-18] FDOPA and gadolinium (Gd) contrast-enhanced MRI. We show that EphA2-4B3-NOTA-Cu-64 effectively delineates tumor boundaries in three different mouse models of glioblastoma. Tumor to brain contrast is significantly higher in EphA2-4B3-NOTA-Cu-64 images than in [F-18] FDOPA images and Gd contrast-enhanced MRI. Furthermore, we show that nonspecific uptake in the liver and spleen can be effectively blocked by a dose of nonspecific (isotype control) IgG.
引用
收藏
页码:385 / +
页数:15
相关论文
共 50 条
  • [31] Molecular breast imaging. Positron emission tomography/magnetic resonance imaging and targeted tracers
    Panagiotis, Kapetas
    Gullo, Roberto Lo
    Resch, Daphne
    Pinker, Katja
    RADIOLOGIE, 2025, : 170 - 177
  • [32] Functional imaging of memory processes in humans: Positron emission tomography and functional magnetic resonance imaging
    Poeppel, T. D.
    Krause, B. J.
    METHODS, 2008, 44 (04) : 315 - 328
  • [33] Whole-body imaging of adoptively transferred T cells using magnetic resonance imaging, single photon emission computed tomography and positron emission tomography techniques, with a focus on regulatory T cells
    Leech, J. M.
    Sharif-Paghaleh, E.
    Maher, J.
    Livieratos, L.
    Lechler, R. I.
    Mullen, G. E.
    Lombardi, G.
    Smyth, L. A.
    CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2013, 172 (02) : 169 - 177
  • [34] Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets
    Andersen, Julie B.
    Henning, William S.
    Lindberg, Ulrich
    Ladefoged, Claes N.
    Hojgaard, Liselotte
    Greisen, Gorm
    Law, Ian
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2015, 35 (11) : 1703 - 1710
  • [35] Magnetic Resonance-Based Motion Correction for Positron Emission Tomography Imaging
    Ouyang, Jinsong
    Li, Quanzheng
    El Fakhri, Georges
    SEMINARS IN NUCLEAR MEDICINE, 2013, 43 (01) : 60 - 67
  • [36] Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data
    Polycarpou, Irene
    Soultanidis, Georgios
    Tsoumpas, Charalampos
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) : 703 - 711
  • [37] Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder - A combined magnetic resonance imaging and positron emission tomography study
    Haarman, Bartholomeus C. M.
    Burger, Huibert
    Doorduin, Janine
    Renken, Remco J.
    Sibeijn-Kuiper, Anita J.
    Marsman, Jan-Bernard C.
    de Vries, Erik F. J.
    de Groot, Jan Cees
    Drexhage, Hemmo A.
    Mendes, Richard
    Nolen, Willem A.
    Riemersma-Van der Lek, Rixt F.
    BRAIN BEHAVIOR AND IMMUNITY, 2016, 56 : 21 - 33
  • [38] Attenuation Correction for Flexible Magnetic Resonance Coils in Combined Magnetic Resonance/Positron Emission Tomography Imaging
    Eldib, Mootaz
    Bini, Jason
    Calcagno, Claudia
    Robson, Philip M.
    Mani, Venkatesh
    Fayad, Zahi A.
    INVESTIGATIVE RADIOLOGY, 2014, 49 (02) : 63 - 69
  • [39] On the Quantification Accuracy, Homogeneity, and Stability of Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging Systems
    Schmidt, Holger
    Schwenzer, Nina F.
    Bezrukov, Ilja
    Mantlik, Frederic
    Kolb, Armin
    Kupferschlaeger, Juergen
    Pichler, Bernd J.
    INVESTIGATIVE RADIOLOGY, 2014, 49 (06) : 373 - 381
  • [40] Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2019: Positron emission tomography, computed tomography and magnetic resonance
    Wael A. AlJaroudi
    Fadi G. Hage
    Journal of Nuclear Cardiology, 2020, 27 : 921 - 930