EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study

被引:27
|
作者
Puttick, Simon
Stringer, Brett W.
Day, Bryan W.
Bruce, Zara C.
Ensbey, Kathleen S.
Mardon, Karine
Cowin, Gary J.
Thurecht, Kristofer J.
Whittaker, Andrew K.
Fay, Michael
Boyd, Andrew W.
Rose, Stephen
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld, Australia
[2] Univ Queensland, Ctr Adv Imaging, St Lucia, Qld, Australia
[3] QIMR Berghofer Med Res Inst, Herston, Qld, Australia
[4] Australian Natl Imaging Facil, Queensland Node, Brisbane, Qld, Australia
[5] ARC Ctr Excellence Convergent Bionano Sci & Techn, Queensland Node, Brisbane, Qld, Australia
[6] Queensland Hlth Royal Brisbane & Womens Hosp, Herston, Qld, Australia
[7] CSIRO, Australian E Hlth Res Ctr, Herston, Qld, Australia
来源
MOLECULAR IMAGING | 2015年 / 14卷
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
EPHB4; RECEPTORS; CANCER; TUMOR; ANTIBODY; PET; THERAPY; EPHRINS; SPECT; MRI;
D O I
10.2310/7290.2015.00008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Noninvasive imaging is a critical technology for diagnosis, classification, and subsequent treatment planning for patients with glioblastoma. It has been shown that the EphA2 receptor tyrosine kinase (RTK) is overexpressed in a number of tumors, including glioblastoma. Expression levels of Eph RTKs have been linked to tumor progression, metastatic spread, and poor patient prognosis. As EphA2 is expressed at low levels in normal neural tissues, this protein represents an attractive imaging target for delineation of tumor infiltration, providing an improved platform for image-guided therapy. In this study, EphA2-4B3, a monoclonal antibody specific to human EphA2, was labeled with Cu-64 through conjugation to the chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The resulting complex was used as a positron emission tomography (PET) tracer for the acquisition of high-resolution longitudinal PET/magnetic resonance images. EphA2-4B3-NOTA-Cu-64 images were qualitatively and quantitatively compared to the current clinical standards of [F-18] FDOPA and gadolinium (Gd) contrast-enhanced MRI. We show that EphA2-4B3-NOTA-Cu-64 effectively delineates tumor boundaries in three different mouse models of glioblastoma. Tumor to brain contrast is significantly higher in EphA2-4B3-NOTA-Cu-64 images than in [F-18] FDOPA images and Gd contrast-enhanced MRI. Furthermore, we show that nonspecific uptake in the liver and spleen can be effectively blocked by a dose of nonspecific (isotype control) IgG.
引用
收藏
页码:385 / +
页数:15
相关论文
共 50 条
  • [21] Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging
    Urban, Nina B. L.
    Slifstein, Mark
    Meda, Shashwath
    Xu, Xiaoyan
    Ayoub, Rawad
    Medina, Olga
    Pearlson, Godfrey D.
    Krystal, John H.
    Abi-Dargham, Anissa
    PSYCHOPHARMACOLOGY, 2012, 221 (01) : 67 - 77
  • [22] Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging
    Nina B. L. Urban
    Mark Slifstein
    Shashwath Meda
    Xiaoyan Xu
    Rawad Ayoub
    Olga Medina
    Godfrey D. Pearlson
    John H. Krystal
    Anissa Abi-Dargham
    Psychopharmacology, 2012, 221 : 67 - 77
  • [23] Positron emission tomography/magnetic resonance imaging in musculoskeletal benign conditions
    Wan, Simon
    QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 66 (01) : 31 - 42
  • [24] The Topography of Striatal Dopamine and Symptoms in Psychosis: An Integrative Positron Emission Tomography and Magnetic Resonance Imaging Study
    McCutcheon, Robert A.
    Jauhar, Sameer
    Pepper, Fiona
    Nour, Matthew M.
    Rogdaki, Maria
    Veronese, Mattia
    Turkheimer, Federico E.
    Egerton, Alice
    McGuire, Philip
    Mehta, Mitul M.
    Howes, Oliver D.
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2020, 5 (11) : 1040 - 1051
  • [25] Simultaneous 68Ga DOTATATE Positron Emission Tomography/Magnetic Resonance Imaging in Meningioma Target Contouring: Feasibility and Impact Upon Interobserver Variability Versus Positron Emission Tomography/Computed Tomography and Computed Tomography/Magnetic Resonance Imaging
    Maclean, J.
    Fersht, N.
    Sullivan, K.
    Kayani, I.
    Bomanji, J.
    Dickson, J.
    O'Meara, C.
    Short, S.
    CLINICAL ONCOLOGY, 2017, 29 (07) : 448 - 458
  • [26] Interest of positron-emission tomography and magnetic resonance imaging for radiotherapy planning and control
    Crehange, G.
    Soussan, M.
    Gensanne, D.
    Decazes, P.
    Thariat, J.
    Thureau, S.
    CANCER RADIOTHERAPIE, 2020, 24 (05): : 398 - 402
  • [27] A Baboon Brain Atlas for Magnetic Resonance Imaging and Positron Emission Tomography Image Analysis
    Agaronyan, Artur
    Syed, Raeyan
    Kim, Ryan
    Hsu, Chao-Hsiung
    Love, Scott A.
    Hooker, Jacob M.
    Reid, Alicia E.
    Wang, Paul C.
    Ishibashi, Nobuyuki
    Kang, Yeona
    Tu, Tsang-Wei
    FRONTIERS IN NEUROANATOMY, 2022, 15
  • [28] Positron Emission Tomography/Magnetic Resonance Imaging Radiomics in Predicting Lung Adenocarcinoma and Squamous Cell Carcinoma
    Tang, Xin
    Liang, Jiangtao
    Xiang, Bolin
    Yuan, Changfeng
    Wang, Luoyu
    Zhu, Bin
    Ge, Xiuhong
    Fang, Min
    Ding, Zhongxiang
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [29] Computed tomography, magnetic resonance imaging and 11C-metomidate positron emission tomography for evaluation of adrenal incidentalomas
    Joakim, Hennings
    Per, Hellman
    Hakan, Ahlstroem
    Anders, Sundin
    EUROPEAN JOURNAL OF RADIOLOGY, 2009, 69 (02) : 314 - 323