EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study

被引:27
|
作者
Puttick, Simon
Stringer, Brett W.
Day, Bryan W.
Bruce, Zara C.
Ensbey, Kathleen S.
Mardon, Karine
Cowin, Gary J.
Thurecht, Kristofer J.
Whittaker, Andrew K.
Fay, Michael
Boyd, Andrew W.
Rose, Stephen
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld, Australia
[2] Univ Queensland, Ctr Adv Imaging, St Lucia, Qld, Australia
[3] QIMR Berghofer Med Res Inst, Herston, Qld, Australia
[4] Australian Natl Imaging Facil, Queensland Node, Brisbane, Qld, Australia
[5] ARC Ctr Excellence Convergent Bionano Sci & Techn, Queensland Node, Brisbane, Qld, Australia
[6] Queensland Hlth Royal Brisbane & Womens Hosp, Herston, Qld, Australia
[7] CSIRO, Australian E Hlth Res Ctr, Herston, Qld, Australia
来源
MOLECULAR IMAGING | 2015年 / 14卷
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
EPHB4; RECEPTORS; CANCER; TUMOR; ANTIBODY; PET; THERAPY; EPHRINS; SPECT; MRI;
D O I
10.2310/7290.2015.00008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Noninvasive imaging is a critical technology for diagnosis, classification, and subsequent treatment planning for patients with glioblastoma. It has been shown that the EphA2 receptor tyrosine kinase (RTK) is overexpressed in a number of tumors, including glioblastoma. Expression levels of Eph RTKs have been linked to tumor progression, metastatic spread, and poor patient prognosis. As EphA2 is expressed at low levels in normal neural tissues, this protein represents an attractive imaging target for delineation of tumor infiltration, providing an improved platform for image-guided therapy. In this study, EphA2-4B3, a monoclonal antibody specific to human EphA2, was labeled with Cu-64 through conjugation to the chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The resulting complex was used as a positron emission tomography (PET) tracer for the acquisition of high-resolution longitudinal PET/magnetic resonance images. EphA2-4B3-NOTA-Cu-64 images were qualitatively and quantitatively compared to the current clinical standards of [F-18] FDOPA and gadolinium (Gd) contrast-enhanced MRI. We show that EphA2-4B3-NOTA-Cu-64 effectively delineates tumor boundaries in three different mouse models of glioblastoma. Tumor to brain contrast is significantly higher in EphA2-4B3-NOTA-Cu-64 images than in [F-18] FDOPA images and Gd contrast-enhanced MRI. Furthermore, we show that nonspecific uptake in the liver and spleen can be effectively blocked by a dose of nonspecific (isotype control) IgG.
引用
收藏
页码:385 / +
页数:15
相关论文
共 50 条
  • [1] Positron Emission Tomography/Magnetic Resonance Imaging of Glioblastoma Using a Functionalized Gadofullerene Nanoparticle
    Chen, Daiqin
    Zhou, Yue
    Yang, Dongzhi
    Guan, Mirong
    Zhen, Mingming
    Lu, Weifei
    Van Dort, Marcian E.
    Ross, Brian D.
    Wang, Chunru
    Shu, Chunying
    Hong, Hao
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (24) : 21343 - 21352
  • [2] Anaesthesia for magnetic resonance imaging and positron emission tomography
    Veenith, Tonny
    Coles, Jonathan P.
    CURRENT OPINION IN ANESTHESIOLOGY, 2011, 24 (04) : 451 - 458
  • [3] Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors: comparison with positron emission tomography/computed tomography
    Nakajo, Kazuya
    Tatsumi, Mitsuaki
    Inoue, Atsuo
    Isohashi, Kayako
    Higuchi, Ichiro
    Kato, Hiroki
    Imaizumi, Masao
    Enomoto, Takayuki
    Shimosegawa, Eku
    Kimura, Tadashi
    Hatazawa, Jun
    JAPANESE JOURNAL OF RADIOLOGY, 2010, 28 (02) : 95 - 100
  • [4] Imaging of transplanted islets by positron emission tomography, magnetic resonance imaging, and ultrasonography
    Sakata, Naoaki
    Yoshimatsu, Gumpei
    Tsuchiya, Haruyuki
    Aoki, Takeshi
    Mizuma, Masamichi
    Motoi, Fuyuhiko
    Katayose, Yu
    Kodama, Tetsuya
    Egawa, Shinichi
    Unno, Michiaki
    ISLETS, 2013, 5 (05) : 179 - 187
  • [5] Imaging prostate cancer: An update on positron emission tomography and magnetic resonance imaging
    Bouchelouche K.
    Turkbey B.
    Choyke P.
    Capala J.
    Current Urology Reports, 2010, 11 (3) : 180 - 190
  • [6] Clinical Positron Emission Tomography/Magnetic Resonance Imaging Applications
    von Schulthess, Gustav K.
    Kuhn, Felix Pierre
    Kaufmann, Philipp
    Veit-Haibach, Patrick
    SEMINARS IN NUCLEAR MEDICINE, 2013, 43 (01) : 3 - 10
  • [7] Comparison of the diagnostic accuracy of diffusion-weighted magnetic resonance imaging and positron emission tomography/computed tomography in pulmonary nodules: a prospective study
    Can, Tuba Selcuk
    Uzan, Gulfidan
    POLISH JOURNAL OF RADIOLOGY, 2019, 84 : E498 - E503
  • [8] Update on Positron Emission Tomography/ Magnetic Resonance Imaging Cancer and Inflammation Imaging in the Clinic
    Sabeghi, Paniz
    Katal, Sanaz
    Chen, Michelle
    Taravat, Farzaneh
    Werner, Thomas J.
    Saboury, Babak
    Gholamrezanezhad, Ali
    Alavi, Abass
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2023, 31 (04) : 517 - 538
  • [9] MAGNETIC-RESONANCE-IMAGING AND POSITRON EMISSION TOMOGRAPHY OF BAND HETEROTOPIA
    MIURA, K
    WATANABE, K
    MAEDA, N
    MATSUMOTO, A
    KUMAGAI, T
    ITO, K
    KATO, T
    BRAIN & DEVELOPMENT, 1993, 15 (04): : 288 - 290
  • [10] The Role of Positron Emission Tomography/Magnetic Resonance Imaging in Gynecological Malignancies
    Virarkar, Mayur
    Viswanathan, Chitra
    Iyer, Revathy
    de Castro Faria, Silvana
    Morani, Ajaykumar
    Carter, Brett
    Ganeshan, Dhakshinamoorthy
    Elsherif, Sherif
    Bhosale, Priya R.
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2019, 43 (06) : 825 - 834