Stress Transmitters at the Molecular Level in the Deformation and Fracture Processes of the Lamellar Structure of Polyethylene via Coarse-Grained Molecular Dynamics Simulations

被引:13
|
作者
Higuchi, Yuji [1 ,2 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778581, Japan
[2] Tohoku Univ, Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
关键词
NATURAL DRAW RATIO; SEMICRYSTALLINE POLYMERS; PLASTIC-DEFORMATION; MECHANICAL-PROPERTIES; ISOTACTIC POLYPROPYLENE; TENSILE DEFORMATION; CATASTROPHE-THEORY; NECK-INITIATION; TIE MOLECULES; CRYSTALLIZATION;
D O I
10.1021/acs.macromol.9b00636
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
To improve the toughness of semicrystalline polymers against stretching, it is essential to understand the stress transmission processes at the molecular level. The deformation and fracture processes of the lamellar structure of polyethylene were studied using coarse-grained molecular dynamics simulations to investigate the influence of molecular structures such as tie chains and entanglements. First, two models with different numbers of tie chains and entanglements were successfully constructed and subjected to simulated stretching. The results revealed that tie chains and entanglements indeed transmit the stress upon stretching. The roles of these molecular structures were found to be similar at low strain, whereas the tie chains were more important at void generation owing to the rapid relaxation of the entanglements. Next, to unravel the behavior of the tie chains, a model containing defects was subjected to simulated stretching. In the model lacking defects, the tie chains functioned similarly in all four amorphous layers. Interestingly, in the model containing defects, the stresses of the tie chains in the amorphous layers containing defects were found to be higher than those in the amorphous layers lacking defects following void generation. Therefore, the nature of the stress transmitters in the lamellar structure of semicrystalline polymers has been successfully elucidated at the molecular level.
引用
收藏
页码:6201 / 6212
页数:12
相关论文
共 50 条
  • [21] Coarse-grained molecular dynamics simulations of ionic polymer networks
    Dirama, T. E.
    Varshney, V.
    Anderson, K. L.
    Shumaker, J. A.
    Johnson, J. A.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2008, 12 (03) : 205 - 220
  • [22] Ultra coarse-grained molecular dynamics simulations of lipid bilayers
    Carrillo, Jan Michael
    Katsaras, John
    Sumpter, Bobby
    Ashkar, Rana
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [23] Assembly of lipoproteins revealed by coarse-grained molecular dynamics simulations
    Shih, Amy Y.
    Freddolino, Peter L.
    Arkhipov, Anton
    Schulten, Klaus
    BIOPHYSICAL JOURNAL, 2007, : 250A - 250A
  • [24] A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose
    Wohlert, Jakob
    Berglund, Lars A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (03) : 753 - 760
  • [25] Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum
    Arkhipov, Anton
    Freddolino, Peter L.
    Imada, Katsumi
    Namba, Keiichi
    Schulten, Klaus
    BIOPHYSICAL JOURNAL, 2006, 91 (12) : 4589 - 4597
  • [26] Coarse-Grained Molecular Dynamics Simulations of Membrane Trehalose Interactions
    Kapla, Jon
    Stevensson, Baltzar
    Maliniak, Arnold
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (36): : 9621 - 9631
  • [27] Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations
    Bulacu, Monica
    Goga, Nicolae
    Zhao, Wei
    Rossi, Giulia
    Monticelli, Luca
    Periole, Xavier
    Tieleman, D. Peter
    Marrink, Siewert J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) : 3282 - 3292
  • [28] Coarse-grained molecular dynamics simulations of nanopatterning with multivalent inks
    Cieplak, Marek
    Thompson, Damien
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (23):
  • [29] Coarse-grained molecular dynamics simulations of ionic polymer networks
    T. E. Dirama
    V. Varshney
    K. L. Anderson
    J. A. Shumaker
    J. A. Johnson
    Mechanics of Time-Dependent Materials, 2008, 12 : 205 - 220
  • [30] Coarse-grained molecular dynamics simulations of photoswitchable assembly and disassembly
    Zheng, Xiaoyan
    Wang, Dong
    Shuai, Zhigang
    NANOSCALE, 2013, 5 (09) : 3681 - 3689