Non-Gaussian error probability in optical soliton transmission

被引:20
作者
Falkovich, G
Kolokolov, I
Lebedev, V
Mezentsev, V [1 ]
Turitsyn, S
机构
[1] Aston Univ, Birmingham B4 7ET, W Midlands, England
[2] LD Landau Theoret Phys Inst, Moscow 117940, Russia
[3] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[4] Weizmann Inst Sci, IL-76100 Rehovot, Israel
关键词
soliton; non-Gaussian statistics; error probability; optical communication;
D O I
10.1016/j.physd.2004.01.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the framework of noisy nonlinear Schrodinger equation. We then consider model modifications due to in-line (filtering, amplitude and phase modulation) control. It is examined how control elements change the error probability in optical soliton transmission. Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are beyond perturbation theory. We describe in detail a new phenomenon of, soliton collapse that occurs under the combined action of noise, filtering and amplitude modulation. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 16 条
[1]   Evolution of randomly modulated solitons in optical fibers [J].
Abdullaev, FK ;
Darmanyan, SA ;
Lederer, F .
OPTICS COMMUNICATIONS, 1996, 126 (1-3) :89-94
[2]   Shedding and interaction of solitons in imperfect medium [J].
Chertkov, M ;
Gabitov, I ;
Kolokolov, I ;
Lebedev, V .
JETP LETTERS, 2001, 74 (07) :357-361
[3]   INVERSE SCATTERING-THEORY WITH STOCHASTIC INITIAL POTENTIALS [J].
ELGIN, JN .
PHYSICS LETTERS A, 1985, 110 (09) :441-443
[4]   Role of interaction in causing errors in optical soliton transmission [J].
Falkovich, G ;
Stepanov, MG .
OPTICS LETTERS, 2002, 27 (01) :13-15
[5]   Instantons and intermittency [J].
Falkovich, G ;
Kolokolov, I ;
Lebedev, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4896-4907
[6]  
Falkovich GE, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.067602
[7]  
Falkovich GE, 2001, PHYS REV E, V63, DOI 10.1103/PhysRevE.63.025601
[8]   Study of the non-Gaussian timing jitter statistics induced by soliton interaction and filtering [J].
Georges, T .
OPTICS COMMUNICATIONS, 1996, 123 (4-6) :617-623
[9]   DISPERSIVE PERTURBATIONS OF SOLITONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
GORDON, JP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1992, 9 (01) :91-97
[10]   RANDOM-WALK OF COHERENTLY AMPLIFIED SOLITONS IN OPTICAL FIBER TRANSMISSION [J].
GORDON, JP ;
HAUS, HA .
OPTICS LETTERS, 1986, 11 (10) :665-667