Low-light image joint enhancement optimization algorithm based on frame accumulation and multi-scale Retinex

被引:29
|
作者
Wang, Fengjuan [1 ]
Zhang, Baoju [1 ]
Zhang, Cuiping [1 ]
Yan, Wenrui [1 ]
Zhao, Zhiyang [1 ]
Wang, Man [1 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin 300387, Peoples R China
关键词
Frame accumulation; Image enhancement; The bilateral filtering; Multi-scale Retinex; Low illumination;
D O I
10.1016/j.adhoc.2020.102398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is acknowledged that images taken under low-light conditions are easily affected by low visible light and noise, which can cause important image information loss, low signal-to-noise ratio, blurred edges, and poor subjective vision. Related researchers have targeted some solutions are proposed for the above problems, such as histogram equalization and gamma correction, but all have problems such as edge loss and color distortion. Based on the above problems, this paper proposes a low-light image enhancement optimization algorithm based on frame accumulation and multi-scale Retinex joint processing. First, single-channel image frame accumulation filtering is performed on the low-light image, and then the image is jointly enhanced with the optimized multi-scale Retinex algorithm. The experimental results show that the peak signal-to-noise ratio of the image processed by the joint enhancement optimization algorithm used in this article is increased to 51.2041 dB, which is 15.2633 dB higher than the original image and 1.799 dB higher than the image processed by the traditional MSRCR algorithm, structure similarity increased by 0.12, the enhanced image has higher grayscale resolution and signal-to-noise ratio, while retaining more image edges and detailed texture, reducing color distortion to a certain extent, and the generation of aperture artifacts is weakened. It has a high structural similarity to the original image. The overall quality of the image has been improved to a certain extent, and the subjective and objective evaluations are better than traditional algorithms. Finally, the comparison experiment verifies the effectiveness and practicability of the joint enhancement optimization algorithm in this paper to improve the low-light image quality, Which provides a new pre-processing method for future intelligent target detection, and has important research value.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Multi-scale joint network based on Retinex theory for low-light enhancement
    Song, Xijuan
    Huang, Jijiang
    Cao, Jianzhong
    Song, Dawei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) : 1257 - 1264
  • [2] Multi-scale joint network based on Retinex theory for low-light enhancement
    Xijuan Song
    Jijiang Huang
    Jianzhong Cao
    Dawei Song
    Signal, Image and Video Processing, 2021, 15 : 1257 - 1264
  • [3] Low-light Image Enhancement Algorithm Based on Improved Multi-scale Retinex with Adaptive Brightness Compensation
    Wang, Xinxin
    Yi, Ru
    Sun, Mingyang
    Zhang, Zhaozheng
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 2234 - 2239
  • [4] RDMA: low-light image enhancement based on retinex decomposition and multi-scale adjustment
    Jiafeng Li
    Shuai Hao
    Tianshuo Li
    Li Zhuo
    Jing Zhang
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1693 - 1709
  • [5] RDMA: low-light image enhancement based on retinex decomposition and multi-scale adjustment
    Li, Jiafeng
    Hao, Shuai
    Li, Tianshuo
    Zhuo, Li
    Zhang, Jing
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1693 - 1709
  • [6] MARN: Multi-Scale Attention Retinex Network for Low-Light Image Enhancement
    Zhang, Xin
    Wang, Xia
    IEEE ACCESS, 2021, 9 : 50939 - 50948
  • [7] Optimization algorithm for low-light image enhancement based on Retinex theory
    Yang, Jie
    Wang, Jun
    Dong, LinLu
    Chen, ShuYuan
    Wu, Hao
    Zhong, YaWen
    IET IMAGE PROCESSING, 2023, 17 (02) : 505 - 517
  • [8] Learning Multi-scale Retinex with Residual Network for Low-Light Image Enhancement
    Ma, Long
    Lin, Jie
    Shang, Jingjie
    Zhong, Wei
    Fan, Xin
    Luo, Zhongxuan
    Liu, Risheng
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 291 - 302
  • [9] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [10] Transformer-Based Multi-scale Optimization Network for Low-Light Image Enhancement
    Niu Y.
    Lin X.
    Xu H.
    Li Y.
    Chen Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (06): : 511 - 529