Automatic Detection of Tuberculosis Bacilli from Microscopic Sputum Smear Images Using Faster R-CNN, Transfer Learning and Augmentation

被引:16
|
作者
El-Melegy, Moumen [1 ]
Mohamed, Doaa [1 ]
ElMelegy, Tarek [2 ]
机构
[1] Assiut Univ, Sch Engn, Elect Engn Dept, Assiut 71516, Egypt
[2] Assiut Univ, Sch Med, Clin Pathol Dept, Assiut 71516, Egypt
关键词
Deep learning; Faster R-CNN; Tuberculosis; Mycobacterium tuberculosis; Conventional microscopy; MYCOBACTERIUM-TUBERCULOSIS; FLUORESCENCE;
D O I
10.1007/978-3-030-31332-6_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tuberculosis (TB) is a serious infectious disease that remains a global health problem with an enormous burden of disease. TB spreads widely in low- and middle-income countries, which depend primarily on sputum smear test using conventional light microscopy in disease diagnosis, in this paper we propose a new deep-learning approach for bacilli localization and classification in conventional ZN-stained microscopic images. The approach is based on the state of the art Faster Region-based Convolutional Neural Network (RCNN) framework. Our experimental results show significant improvement by the proposed approach compared to existing methods, thus helping in accurate disease diagnosis.
引用
收藏
页码:270 / 278
页数:9
相关论文
共 50 条
  • [21] Tumor Detection In Breast Histopathological Images Using Faster R-CNN
    Harrison, Pratibha
    Park, Kihan
    2021 INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS (ISMR), 2021,
  • [22] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    M. Emin Sahin
    Hasan Ulutas
    Esra Yuce
    Mustafa Fatih Erkoc
    Neural Computing and Applications, 2023, 35 : 13597 - 13611
  • [23] Faster R-CNN for Marine Organism Detection and Recognition Using Data Augmentation
    Zhou, Hao
    Huang, Hai
    Yang, Xu
    Zhang, Lu
    Qi, Lu
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2017), 2017, : 56 - 62
  • [24] Faster R-CNN for marine organisms detection and recognition using data augmentation
    Huang, Hai
    Zhou, Hao
    Yang, Xu
    Zhang, Lu
    Qi, Lu
    Zang, Ai-Yun
    NEUROCOMPUTING, 2019, 337 : 372 - 384
  • [25] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    Sahin, M. Emin
    Ulutas, Hasan
    Yuce, Esra
    Erkoc, Mustafa Fatih
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (18): : 13597 - 13611
  • [26] Fault Detection from Bend Test Images of Welding Using Faster R-CNN
    Kato, Shigeru
    Hino, Takanori
    Kumeno, Hironori
    Kume, Shunsaku
    Kagawa, Tomomichi
    Nobuhara, Hajime
    ADVANCES IN INTERNET, DATA & WEB TECHNOLOGIES (EIDWT-2022), 2022, 118 : 190 - 200
  • [27] FIRE DETECTION FROM IMAGES USING FASTER R-CNN AND MULTIDIMENSIONAL TEXTURE ANALYSIS
    Barmpoutis, Panagiotis
    Dimitropoulos, Kosmas
    Kaza, Kyriaki
    Grammalidis, Nikos
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8301 - 8305
  • [28] DETECTION AND CLASSIFICATION OF BRAIN TUMOURS FROM MRI IMAGES USING FASTER R-CNN
    Avsar, Ercan
    Salcin, Kerem
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2019, 13 (04): : 337 - 342
  • [29] Seagrass Detection from Underwater Digital Images using Faster R-CNN with NASNet
    Noman, Md Kislu
    Islam, Syed Mohammed Shamsul
    Abu-Khalaf, Jumana
    Lavery, Paul
    2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, : 175 - 180
  • [30] Research on Detection of Mycobacterium Tuberculosis from Microscopic Sputum Smear Images using Image Segmentation
    Saravanan, D.
    Bhavya, R.
    Archanaa, G. I.
    Karthika, D.
    Subban, Ravi
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2017, : 969 - 974