Automatic Detection of Tuberculosis Bacilli from Microscopic Sputum Smear Images Using Faster R-CNN, Transfer Learning and Augmentation

被引:16
|
作者
El-Melegy, Moumen [1 ]
Mohamed, Doaa [1 ]
ElMelegy, Tarek [2 ]
机构
[1] Assiut Univ, Sch Engn, Elect Engn Dept, Assiut 71516, Egypt
[2] Assiut Univ, Sch Med, Clin Pathol Dept, Assiut 71516, Egypt
关键词
Deep learning; Faster R-CNN; Tuberculosis; Mycobacterium tuberculosis; Conventional microscopy; MYCOBACTERIUM-TUBERCULOSIS; FLUORESCENCE;
D O I
10.1007/978-3-030-31332-6_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tuberculosis (TB) is a serious infectious disease that remains a global health problem with an enormous burden of disease. TB spreads widely in low- and middle-income countries, which depend primarily on sputum smear test using conventional light microscopy in disease diagnosis, in this paper we propose a new deep-learning approach for bacilli localization and classification in conventional ZN-stained microscopic images. The approach is based on the state of the art Faster Region-based Convolutional Neural Network (RCNN) framework. Our experimental results show significant improvement by the proposed approach compared to existing methods, thus helping in accurate disease diagnosis.
引用
收藏
页码:270 / 278
页数:9
相关论文
共 50 条
  • [1] Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods
    Panicker, Rani Oomman
    Kalmady, Kaushik S.
    Rajan, Jeny
    Sabu, M. K.
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2018, 38 (03) : 691 - 699
  • [2] Detection of Tuberculosis Bacilli from Microscopic Sputum Smear Images
    Sugirtha, Evangelin G.
    Murugesan, G.
    2017 THIRD INTERNATIONAL CONFERENCE ON BIOSIGNALS, IMAGES AND INSTRUMENTATION (ICBSII), 2017,
  • [3] Automatic Detection of Tuberculosis bacilli from Conventional Sputum Smear Microscopic Images Using Densely Connected Convolutional Networks
    Panicker R.O.
    Sabu M.K.
    SN Computer Science, 3 (4)
  • [4] Segmentation of sputum smear images for detection of tuberculosis bacilli
    Feminna Sheeba
    Robinson Thamburaj
    Joy Sarojini Michael
    P Maqlin
    Joy John Mammen
    BMC Infectious Diseases, 12 (Suppl 1)
  • [5] Detection of Overlapping Tuberculosis Bacilli in Sputum Smear Images
    Sheeba, Feminna
    Thamburaj, Robinson
    Mammen, Joy John
    Nithish, R.
    Karthick, S.
    7TH WACBE WORLD CONGRESS ON BIOENGINEERING 2015, 2015, 52 : 54 - 56
  • [6] GFD Faster R-CNN: Gabor Fractal DenseNet Faster R-CNN for Automatic Detection of Esophageal Abnormalities in Endoscopic Images
    Ghatwary, Noha
    Zolgharni, Massoud
    Ye, Xujiong
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019), 2019, 11861 : 89 - 97
  • [7] Automatic Detection of Welding Defects Using Faster R-CNN
    Oh, Sang-jin
    Jung, Min-jae
    Lim, Chaeog
    Shin, Sung-chul
    APPLIED SCIENCES-BASEL, 2020, 10 (23): : 1 - 10
  • [8] DETECTION OF TUBERCULOSIS BACILLI FROM ZIEHL NEELSON STAINED SPUTUM SMEAR IMAGES
    Sugirtha, Evangelin G.
    Murugesan, G.
    Vinu, S.
    2017 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2017,
  • [9] Glomerulus Detection on Light Microscopic Images of Renal Pathology with the Faster R-CNN
    Lo, Ying-Chih
    Juang, Chia-Feng
    Chung, I-Fang
    Guo, Shin-Ning
    Huang, Man-Ling
    Wen, Mei-Chin
    Lin, Cheng-Jian
    Lin, Hsueh-Yi
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VII, 2018, 11307 : 369 - 377
  • [10] Underwater human detection using faster R-CNN with data augmentation
    Dulhare U.N.
    Hussam Ali M.
    Materials Today: Proceedings, 2023, 80 : 1940 - 1945