Microscopic theory for nematic fractional quantum Hall effect

被引:14
作者
Yang, Bo [1 ,2 ]
机构
[1] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
新加坡国家研究基金会;
关键词
STATE;
D O I
10.1103/PhysRevResearch.2.033362
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze various microscopic properties of the nematic fractional quantum Hall effect (FQHN) in the thermodynamic limit, and present necessary conditions required of the microscopic Hamiltonians for the nematic fractional quantum Hall effect to be robust. Analytical expressions for the degenerate ground state manifold, ground state energies, and gapless nematic modes are given in compact forms with the input interaction and the corresponding ground state structure factors. We relate the long wavelength limit of the neutral excitations to the guiding center metric deformation, and show explicitly the family of trial wave functions for the nematic modes with spatially varying nematic order near the quantum critical point. For short range interactions, the dynamics of the FQHN is completely determined by the long wavelength part of the ground state structure factor. The special case of the FQHN at nu = 1/3 is discussed with theoretical insights from the Haffnian parent Hamiltonian, leading to a number of rigorous statements and experimental implications.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Positions of the magnetoroton minima in the fractional quantum Hall effect [J].
Balram, Ajit C. ;
Pu, Songyang .
EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (06)
[2]   State counting for excited bands of the fractional quantum Hall effect: Exclusion rules for bound excitons [J].
Balram, Ajit C. ;
Wojs, Arkadiusz ;
Jain, Jainendra K. .
PHYSICAL REVIEW B, 2013, 88 (20)
[3]   Competing Charge Density Waves Probed by Nonlinear Transport and Noise in the Second and Third Landau Levels [J].
Bennaceur, K. ;
Lupien, C. ;
Reulet, B. ;
Gervais, G. ;
Pfeiffer, L. N. ;
West, K. W. .
PHYSICAL REVIEW LETTERS, 2018, 120 (13)
[4]   Model fractional quantum Hall states and Jack polynomials [J].
Bernevig, B. Andrei ;
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[5]   Fractional quantum Hall systems near nematicity: Bimetric theory, composite fermions, and Dirac brackets [J].
Dung Xuan Nguyen ;
Gromov, Andrey ;
Dam Thanh Son .
PHYSICAL REVIEW B, 2018, 97 (19)
[6]  
Friess B, 2017, NAT PHYS, V13, P1124, DOI [10.1038/NPHYS4213, 10.1038/nphys4213]
[7]   Anomalous Nematic States in High Half-Filled Landau Levels [J].
Fu, X. ;
Shi, Q. ;
Zudov, M. A. ;
Gardner, G. C. ;
Watson, J. D. ;
Manfra, M. J. ;
Baldwin, K. W. ;
Pfeiffer, L. N. ;
West, K. W. .
PHYSICAL REVIEW LETTERS, 2020, 124 (06)
[8]   MAGNETO-ROTON THEORY OF COLLECTIVE EXCITATIONS IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
GIRVIN, SM ;
MACDONALD, AH ;
PLATZMAN, PM .
PHYSICAL REVIEW B, 1986, 33 (04) :2481-2494
[9]   Current-induced anisotropy and reordering of the electron liquid-crystal phases in a two-dimensional electron system [J].
Goeres, J. ;
Gamez, G. ;
Smet, J. H. ;
Pfeiffer, L. ;
West, K. ;
Yacoby, A. ;
Umansky, V. ;
von Klitzing, K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (24)
[10]  
Green D., ARXIVCONDMAT0202455