Design and optimization of the CEPC scintillator hadronic calorimeter

被引:5
|
作者
Shi, Yukun [1 ,2 ]
Zhang, Yunlong [1 ,2 ]
Ruan, Manqi [3 ]
Liu, Jianbei [1 ,2 ]
机构
[1] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
关键词
Calorimeter methods; Calorimeters; Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Scintillators; scintillation and light emission processes (solid gas and liquid scintillators);
D O I
10.1088/1748-0221/17/11/P11034
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Circular Electron Positron Collider (CEPC) is a next-generation electron-positron collider proposed for precision measurement of the properties of the Higgs boson. Amajor challenge for the CEPC detector is achieving a boson mass resolution (BMR) of 4%, which is required to separate the Higgs, Z, and W bosons in their hadronic decays. The baseline design of the CEPC detector was guided by the particle flow algorithm (PFA) concept to satisfy the BMR requirements. The BMR performance obtained by the PFA approach is primarily determined by the shower separation capability and energy resolution of the calorimeters of the detector system. A hadronic calorimeter with high granularity is crucial for providing the required separation power and energy resolution for the desired BMR. In this context, the analogue hadron calorimeter (AHCAL), a scintillator hadronic calorimeter with analogue readout, is a potential hadronic calorimeter option for the CEPC detector. In this study, key design parameters of the AHCAL, including scintillator cell size, number of sampling layers, absorber thickness, and scintillator thickness, were optimized for BMR performance on the benchmark process of e(+) e(-) -> vv(-)H ,H -> gg. Notably, herein, a set of optimized design parameters is presented for the CEPC AHCAL that meets the required BMR with reduced readout channels. Specifically, the set of proposed AHCAL design parameters is as follows: 40 sampling layers, 20mm steel thickness, and 40 x 40 x 3mm(3) scintillator size for every tile. This design achieves a BMR of 3.73% and remarkably reduces the number of readout channels.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Cluster time measurement with CEPC calorimeter
    Yuzhi Che
    Vincent Boudry
    Henri Videau
    Muchen He
    Manqi Ruan
    The European Physical Journal C, 83
  • [22] Cluster time measurement with CEPC calorimeter
    Che, Yuzhi
    Boudry, Vincent
    Videau, Henri
    He, Muchen
    Ruan, Manqi
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (01):
  • [23] Design Studies for a Compact Tungsten Scintillator Electromagnetic Calorimeter
    Woody, C.
    Cheung, S.
    Haggerty, J.
    Kistenev, E.
    Stol, S.
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 1471 - 1475
  • [24] Design and optimization of a hadronic calorimeter based on micropattern gaseous detectors for a future experiment at the Muon Collider
    Pellecchia, Antonello
    Buonsante, Marco
    Borysova, Maryna
    Colaleo, Anna
    Camerlingo, Maria Teresa
    Longo, Luigi
    Iodice, Mauro
    Maggi, Marcello
    Moleri, Luca
    Radogna, Raffaella
    Sekhniaidze, Givi
    Simone, Federica Maria
    Stamerra, Anna
    Venditti, Rosamaria
    Verwilligen, Piet
    Zavazieva, Darina
    Zaza, Angela
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1068
  • [25] A merged quadrupole-calorimeter for CEPC
    Talman, Richard
    Hauptman, John
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (33):
  • [26] The Readout Electronics Research Design and Development for CEPC Scintillators Electromagnetic Calorimeter Prototype
    Zhao, Shensen
    Liu, Shubin
    Shen, Zhongtao
    Niu, Yazhou
    Xue, Qi'ao
    Feng, Changqing
    An, Qi
    Zhang, Yunlong
    Liu, Jianbei
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (07) : 1107 - 1114
  • [27] Scintillator tile batch test of CEPC AHCAL
    Duan, Y.
    Jiang, J.
    Li, J.
    Li, L.
    Li, S.
    Liu, D.
    Liu, J.
    Liu, Y.
    Qi, B.
    Qian, R.
    Shen, Z.
    Shi, Y.
    Wang, X.
    Wang, Z.
    Yang, H.
    Yu, B.
    Zhang, Y.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (05)
  • [28] The HyperCP hadronic calorimeter
    Durandet, C
    Crisler, M
    Dukes, EC
    Holmstrom, T
    Huang, M
    Nelson, KS
    Rajaram, D
    Saleh, N
    Tzamouranis, Y
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON CALORIMETRY IN HIGH ENERGY PHYSICS, 1998, : 281 - 285
  • [29] Shower characteristics of particles with momenta up to 100 GeV in the CALICE scintillator-tungsten hadronic calorimeter
    Sicking, Eva
    16TH INTERNATIONAL CONFERENCE ON CALORIMETRY IN HIGH ENERGY PHYSICS (CALOR 2014), 2015, 587
  • [30] A high-granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector
    Andreev, V.
    Cvach, J.
    Danilov, M.
    Devitsin, E.
    Dodonov, V.
    Eigen, G.
    Garutti, E.
    Gilitzky, Yu.
    Groll, M.
    Heuer, R. -D.
    Janata, M.
    Kacl, I.
    Korbel, V.
    Kozlov, V.
    Meyer, H.
    Morgunov, V.
    Nemecek, S.
    Poeschl, R.
    Polak, I.
    Raspereza, A.
    Reiche, S.
    Rusinov, V.
    Sefkow, F.
    Smirnov, P.
    Terkulov, A.
    Valkar, S.
    Weichert, J.
    Zalesak, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 564 (01): : 144 - 154