Deep Learning-Based Masonry Wall Image Analysis

被引:12
|
作者
Ibrahim, Yahya [1 ]
Nagy, Balazs [1 ,2 ,3 ]
Benedek, Csaba [1 ,2 ,3 ]
机构
[1] Peter Pazmany Catholic Univ, 3in PPCU Res Grp, H-2500 Esztergom, Hungary
[2] Inst Comp Sci & Control SZTAKI, H-1111 Budapest, Hungary
[3] Univ Debrecen, Fac Informat, H-4028 Debrecen, Hungary
关键词
masonry wall; segmentation; inpainting; U-Net; GANs; watershed transform; REGION;
D O I
10.3390/rs12233918
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper we introduce a novel machine learning-based fully automatic approach for the semantic analysis and documentation of masonry wall images, performing in parallel automatic detection and virtual completion of occluded or damaged wall regions, and brick segmentation leading to an accurate model of the wall structure. For this purpose, we propose a four-stage algorithm which comprises three interacting deep neural networks and a watershed transform-based brick outline extraction step. At the beginning, a U-Net-based sub-network performs initial wall segmentation into brick, mortar and occluded regions, which is followed by a two-stage adversarial inpainting model. The first adversarial network predicts the schematic mortar-brick pattern of the occluded areas based on the observed wall structure, providing in itself valuable structural information for archeological and architectural applications. The second adversarial network predicts the pixels' color values yielding a realistic visual experience for the observer. Finally, using the neural network outputs as markers in a watershed-based segmentation process, we generate the accurate contours of the individual bricks, both in the originally visible and in the artificially inpainted wall regions. Note that while the first three stages implement a sequential pipeline, they interact through dependencies of their loss functions admitting the consideration of hidden feature dependencies between the different network components. For training and testing the network a new dataset has been created, and an extensive qualitative and quantitative evaluation versus the state-of-the-art is given. The experiments confirmed that the proposed method outperforms the reference techniques both in terms of wall structure estimation and regarding the visual quality of the inpainting step, moreover it can be robustly used for various different masonry wall types.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Deep Learning-Based HCS Image Analysis for the Enterprise
    Steigele, Stephan
    Siegismund, Daniel
    Fassler, Matthias
    Kustec, Marusa
    Kappler, Bernd
    Hasaka, Tom
    Yee, Ada
    Brodte, Annette
    Heyse, Stephan
    SLAS DISCOVERY, 2020, 25 (07) : 812 - 821
  • [2] Robustness Analysis for Deep Learning-Based Image Reconstruction Models
    Ayna, Cemre Omer
    Gurbuz, Ali Cafer
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1428 - 1432
  • [3] Deep Learning-Based Brain Tumor Image Analysis for Segmentation
    Zahid Mansur
    Jyotismita Talukdar
    Thipendra P. Singh
    Chandan J. Kumar
    SN Computer Science, 6 (1)
  • [4] Deep learning-based wall crack detection
    Zheng, Zujia
    Yang, Kui
    International Journal of Wireless and Mobile Computing, 2024, 27 (02) : 118 - 124
  • [5] Effective and efficient active learning for deep learning-based tissue image analysis
    Meirelles, Andre L. S.
    Kurc, Tahsin
    Kong, Jun
    Ferreira, Renato
    Saltz, Joel
    Teodoro, George
    BIOINFORMATICS, 2023, 39 (04)
  • [6] Deep learning-based framework for slide-based histopathological image analysis
    Sai Kosaraju
    Jeongyeon Park
    Hyun Lee
    Jung Wook Yang
    Mingon Kang
    Scientific Reports, 12
  • [7] Deep learning-based galaxy image deconvolution
    Akhaury, Utsav
    Starck, Jean-Luc
    Jablonka, Pascale
    Courbin, Frederic
    Michalewicz, Kevin
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [8] Cloud and deep learning-based image analyzer
    Kumar, Sunil
    Gautam, Kartik
    Singhal, Vatsal
    Sharma, Nitin
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [9] Deep learning-based solar image captioning
    Baek, Ji-Hye
    Kim, Sujin
    Choi, Seonghwan
    Park, Jongyeob
    Kim, Dongil
    ADVANCES IN SPACE RESEARCH, 2024, 73 (06) : 3270 - 3281
  • [10] Deep Learning-based Weather Image Recognition
    Kang, Li-Wei
    Chou, Ke-Lin
    Fu, Ru-Hong
    2018 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2018), 2018, : 384 - 387